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Arnol’d developed two distinct yet closely related approaches to the linear stability of
Euler flows. One is widely used for two-dimensional flows and involves constructing
a conserved functional whose first variation vanishes and whose second variation
determines the linear (and nonlinear) stability of the motion. The second method
is a refinement of Kelvin’s energy principle which states that stable steady Euler
flows represent extremums in energy under a virtual displacement of the vorticity
field. The conserved-functional (or energy-Casimir) method has been extended by
several authors to more complex flows, such as planar MHD flow. In this paper
we generalize the Kelvin–Arnol’d energy method to two-dimensional inviscid flows
subject to a body force of the form −Φ∇f. Here Φ is a materially conserved quantity
and f an arbitrary function of position and of Φ. This encompasses a broad class of
conservative flows, such as natural-convection planar and poloidal MHD flow with the
magnetic field trapped in the plane of the motion, flows driven by electrostatic forces,
swirling recirculating flow, self-gravitating flows and poloidal MHD flow subject to
an azimuthal magnetic field. We show that stable steady motions represent extremums
in energy under a virtual displacement of Φ and of the vorticity field. That is, d1E = 0
at equilibrium and whenever d2E is positive or negative definite the flow is (linearly)
stable. We also show that unstable normal modes must have a spatial structure which
satisfies d2E = 0. This provides a single stability test for a broad class of flows, and
we describe a simple universal procedure for implementing this test. In passing, a new
test for linear stability is developed. That is, we demonstrate that stability is ensured
(for flows of the type considered here) whenever the Lagrangian of the flow is a
maximum under a virtual displacement of the particle trajectories, the displacement
being of the type normally associated with Hamilton’s principle. A simple universal
procedure for applying this test is also given. We apply our general stability criteria
to a range of flows and recover some familiar results. We also extend these ideas to
flows which are subject to more than one type of body force. For example, a new
stability criterion is obtained (without the use of Casimirs) for natural convection in
the presence of a magnetic field. Nonlinear stability is also considered. Specifically,
we develop a nonlinear stability criterion for planar MHD flows which are subject
to isomagnetic perturbations. This differs from previous criteria in that we are able
to extend the linear criterion into the nonlinear regime. We also show how to extend
the Kelvin–Arnol’d method to finite-amplitude perturbations.
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1. Introduction
1.1. Two-dimensional forced flows

There are many branches of fluid mechanics, such as natural convection, magneto-
hydrodynamics and electrodynamics, in which a fluid is subjected to a body force of
the form −Φ∇f, where Φ is a materially conserved quantity. The function f is often,
though not always, the potential of some imposed field. Less often we encounter
forces of the form f∇Φ where Φ is, again, materially conserved. In either case, we
may write the inviscid equation of motion in the form

∂u

∂t
= u×Ω− ∇C + f∇Φ; f = f (x, Φ) . (1.1)

Here Ω is the vorticity, u is the velocity, f is an arbitrary function of position and of
Φ (but not an explicit function of time), and C is a generalized Bernoulli function.
We shall restrict ourselves to cases where the fluid is incompressible and Φ vanishes
on the boundary. We then have the auxiliary equations

∇ · u = 0; u · n = 0 on S (1.2)

DΦ

Dt
= 0; Φ = 0 on S. (1.3)

In this paper we focus on confined two-dimensional flows. In particular, we are
interested in the existence of steady solutions of (1.1), their structure, and above all
their stability characteristics. These flows may be planar, lying in the (x, y)-plane, or
else axisymmetric, lying in the (r, z)-plane. (In the latter case we adopt cylindrical
polar coordinates (r, θ, z).) In any event, all streamlines are assumed to be closed with
the flow confined to a simply connected domain, V , and bounded by the surface S .

We shall place two restrictions on our analysis. First, we limit the discussion to linear
two-dimensional stability. That is, any disturbance is assumed to have an infinitesimal
amplitude and to be strictly two-dimensional (or poloidal) in form. Second, we
consider only non-dissipative systems in which energy is conserved. Specifically, we
ignore all viscous effects, such as cross-stream diffusion, boundary layers, Ekman
pumping, or Hartmann layers. This is, perhaps, the more severe restriction. (We lift
the restriction of small-amplitude perturbations only in the penultimate section, where
we touch upon the question of nonlinear stability.)

The range of flows governed by (1.1)–(1.3) is surprisingly broad. Some familiar
examples are:

(i) (planar) natural convection of an incompressible fluid which exhibits a spa-
tial variation of density, ρ, perhaps due to ‘frozen-in’ variations of temperature or
chemistry;

(ii) MHD flow of a perfectly conducting fluid in which both the trapped magnetic
field, B, and the velocity lie in the (x, y)-plane;

(iii) a non-conducting medium which contains bound charges (say charged dust
particles in air) and which moves in the (x, y)-plane under the influence of mutual
electrostatic forces;

(iv) axisymmetric swirling recirculating flow in which the poloidal component of
motion (ur, 0, uz) is subject to the centripetal acceleration associated with the angular
momentum Γ = ruθ;

(v) a self-gravitating poloidal flow in the Boussinesq approximation (i.e. where
the departure in density from the mean is small, ρ′ = ρ− ρ̄ � ρ̄);
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(vi) axisymmetric MHD flow in which u is poloidal (ur, 0, uz) and B is azimuthal
(0, Bθ, 0);

(vii) axisymmetric MHD flow in which both u and B are poloidal.
In the interests of brevity we shall restrict ourselves to these seven examples.

However, it should be emphasized that this list is by no means exhaustive. We could,
for example, extend case (iii) to ionized plasmas, or case (vi) to compressible MHD
flow with B normal to the plane of motion. (In either case we must, of course,
modify the auxiliary equations to allow for compressibility.) Moreover, as shown in
§8, our ideas extend to flows which are subject to a combination of forces. Thus, for
example, we examine the stabilization of a Rayleigh–Taylor instability by a magnetic
field. However, examples (i)–(vii) seem fairly representative, and so for the most part
we confine attention to these. Note that all of the examples listed above represent
conservative systems. The exact form of f and Φ for each of these flows, as well as a
corresponding justification of (1.1)–(1.3), is given in §3.

We shall examine the stability characteristics of these forced flows using certain
variational techniques. Indeed, one of our observations is that the Kelvin–Arnol’d
energy principle, which states that stable steady flows represent extremums in energy,
may be extended to encompass steady solutions of (1.1). (This method is commonly
used to examine the stability of (unforced) Euler flows (Arnol’d 1966b).) We do not
claim that all of the stability results obtained in this way are new. On the contrary,
many of these flows have been studied using other (energy-like) methods, most notably
by Holm et al. (1985), Shepherd (1992) and Vladimirov, Moffatt & Illin (1996). We do
claim, however, that our systematic extension of the Kelvin–Arnol’d energy principle
to forced flows is both new and useful. The utility of this approach lies in the fact
that it furnishes a single stability test for a wide range of flows, and that there is a
simple universal procedure for implementing this test.

1.2. Arnol’d’s stability theorems

Now Arnol’d developed two related but distinct approaches to the linear stability
of two-dimensional unforced Euler flows. It is important that, from the outset, we
distinguish between the two, and so we briefly describe both methods here. A more
detailed discussion is given in §2. The first method (Arnol’d 1966a) is commonly
referred to as the conserved functional, energy-Casimir, or formal stability approach.
It is widely used for two-dimensional flows and its attraction lies in the fact that it
is readily generalized to give nonlinear results. (This method has been extended to
other categories of two-dimensional flow by Holm et al. 1985, Shepherd 1992 and
many others.) The second approach is commonly referred to as Arnold’s variational
principle, or the Kelvin–Arnol’d energy principle, and its power lies in its generality. It
is not restricted to two-dimensional flows, but may be applied to three-dimensional
Euler flows (Arnol’d 1966a). Now these two methods define stability in rather different
ways (involving different classes of perturbations), and so one question which may
be asked at the outset is: do they share a common view of stability and so lead to
compatible stability criteria? We shall see that, as suggested by Holm et al. (1985) and
Shepherd (1992), the answer to this question is yes and we return to this issue in §2.

The starting point for establishing formal stability is to construct a conserved
functional of the form A = E− I (Ω), where E is the global kinetic energy and I (Ω) is
an integral invariant of the vorticity field (called a Casimir). One then chooses I (Ω)
such that A is stationary at equilibrium. That is, if Ωo is the vorticity of some steady
flow, and ω is an arbitrary infinitesimal perturbation of Ωo (Ω = Ωo + ω), then the
first-order change in A is zero, δ1A = 0. The second variation of A then provides
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information about the stability of the flow. Specifically, the flow is said to possess
formal stability if δ2A is positive or negative definite (Holm et al. 1985). We shall
return to this topic in §2, where we explain the significance of δ2A being single signed.
In the meantime, we consider Arnold’s second approach to stability.

Arnold’s variational (or energy) principle is distinct from, but related to, his
conserved functional approach. It is not restricted to two-dimensional flows (i.e.
flows with only one vorticity component). Indeed it has been applied to axisymmetric
swirling recirculating flows by Davidson (1994) where the introduction of a third
velocity component has a profound effect on stability. The variational (energy) method
rests on the idea of applying a Lagrangian displacement to the fluid particles and
examining the consequent change in kinetic energy. Specifically, Arnol’d’s variational
principle says the following. Suppose the vorticity distribution of some steady Euler
flow is perturbed by a volume-preserving virtual displacement field, η(x). During this
perturbation the vorticity is materially conserved (in a sense to be made precise later)
and consequently such a perturbation is referred to as isovortical. Now consider the
change in global kinetic energy which arises from this perturbation. Let d1E and
d2E be the first- and second-order changes in E. (We use d rather than δ here to
distinguish clearly between the two kinds of perturbation which, as we shall see, are
quite different in form.) Then the Kelvin–Arnol’d variational principle states that:

(i) E is stationary, i.e. d1E = 0 for all η;
(ii) when d2E is positive or negative definite, the flow is linearly stable;
(iii) when d2E is not of definite sign then the flow could be (but need not be)

unstable, and any exponentially growing normal mode must have a spatial structure
which ensures that d2E = 0 at all times.

Conditions (i) and (ii) were stated without proof by Kelvin (1887). However, the
first rational argument for these propositions was given by Arnol’d (1966b). Note that,
in this approach, all integrals of the type I (Ω) are automatically conserved through
the particular choice of the d-perturbation. One advantage of this method is that it
obviates the need to find an integral I (Ω) which ensures that the first variation in A
vanishes. As noted by Holm et al. (1985), and as demonstrated explicitly in §2, I (Ω)
is a form of Lagrange multiplier which allows one to relax the class of admissible
variations from d-perturbations to δ-perturbations.

In summary, then, Arnol’d’s variational principle states that an Euler flow is
(linearly) stable whenever E is a maximum or a minimum with respect to all possible
isovortical perturbations. To broaden Arnol’d’s energy principle from unforced to
forced flows we merely need to generalize the concept of an isovortical perturbation.

1.3. Extension of the Kelvin–Arnol’d energy theorem to forced flows

Our starting point is to note that, while Ω is materially conserved in a planar
unforced flow, this is no longer the case for forced flows of the type (1.1). Rather, Φ
is materially conserved. However, Ω is globally constant in the sense that the total
vorticity contained within each contour of constant Φ (a Φ-line) is conserved by
(1.1). (See §4.) This suggests that we try a new type of perturbation which mimics
the dynamics of these forced flows. As before, we consider a volume-preserving
virtual displacement field, η. This time, however, we apply it to Φ, rather than to Ω.
Simultaneously, we rearrange the vorticity field in such a way that the integral of Ω
within each closed Φ-line is preserved during the perturbation.

In §2 and §4, we introduce the concept of function space, and in particular the idea
(initiated by Arnol’d 1996b) that an inviscid flow evolves within a certain subdomain
of the space of all solenoidal velocity fields. In the case of Euler flows these subdomains
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are characterized by the fact that the vorticity fields can be mapped one to another
by a smooth volume-preserving displacement. For forced flows these subdomains are
more complex. They are composed of u and Φ fields in which various distributions
of Φ may be mapped one to another by a smooth displacement while simultaneously
conserving the integral of Ω within each Φ-line. We shall use this to argue that our
new type of perturbation plays a role in the stability of forced flows which is precisely
equivalent to the role played by Arnol’d’s isovortical perturbation in the stability
of unforced Euler flows. Indeed, it is a convenient shorthand to introduce the term
generalized isovortical perturbation, or simply isovortical perturbation, to denote any
perturbation of Φ and Ω which satisfies the conditions above, that is, any perturbation
in which: (i) Φ is materially conserved during the perturbation; (ii) the total vorticity
contained within each Φ contour is conserved.

Now consider the energy of a forced flow governed by (1.1). The total energy will
consist of kinetic energy plus the energy associated with the body force, which might
be magnetic energy, electrostatic energy, or gravitational energy. We now make the
following proposition concerning the variation of the total energy, E.

Proposition 1. If a solution of (1.1)–(1.3) is perturbed by a generalized isovortical
perturbation (as defined above), then:

(i) E is stationary
(
d1E = 0

)
whenever the flow is a steady solution of (1.1);

(ii) whenever the energy is a maximum or a minimum with respect to all possible
isovortical perturbations, the flow is linearly stable;

(iii) if d2E is of indefinite sign then the flow could be (but need not be) unstable,
and any exponentially growing normal mode must have a spatial structure which ensures
that d2E = 0 at all times.

In short, we claim that, by adjusting the definition of an isovortical perturbation,
the Kelvin–Arnol’d energy principle may be extended to encompass forced inviscid
flows governed by (1.1). We shall prove this only for the seven categories of flow
listed above. Nevertheless, we believe, but do not prove, that Proposition 1 is valid
for all conservative, steady solutions of (1.1). This belief rests on the idea that
unsteady solutions of (1.1) trace out constant energy ‘contours’ within the appropriate
subdomain of function space. If, in the vicinity of a steady solution, these contours
are restricted to a nested set of closed shells then, in some sense, a perturbed
flow cannot migrate far from the equilibrium solution. It is natural, therefore, to
expect stable flows to represent a maximum or minimum in energy within such a
subspace. Saddle points, on the other hand, would normally represent unstable flows.
In Hamiltonian mechanics these subspaces are referred to as iso-Casimir surfaces. We
may regard Proposition 1 as defining and exploring these surfaces. We shall return to
this viewpoint in §5.

1.4. Structure of this paper

We conclude this introduction by outlining the structure of the paper. In §2 we return
to the topic of Arnol’d’s two stability theorems. This allows us to formally introduce
a number of fundamental concepts, such as isovortical perturbations and virtual
displacement fields. It also sets the scene for the subsequent analysis of forced flows.
Next, in §3, we review the broad range of forced inviscid flows which are governed
by (1.1). In each case we identify the form of f and Φ. In §4 we outline the general
properties of (1.1). In particular, we show that (1.1) supports non-trivial steady flows,
conserves energy provided f is not an explicit function of time and supports integral
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invariants of the form

I (Ω,Φ) =

∫
[Ωg (Φ) + h (Φ)] dV . (1.4)

Here g and h are smooth but otherwise arbitrary functions of Φ. Invariants of the
form of (1.4) are central to the energy-Casimir (conserved functional) approach to
stability.

In §5, we adopt the variational (or energy) route to stability, whereby steady solu-
tions of (1.1) are subject to a generalized isovortical perturbation. Subsequently, in §6,
we apply the energy-Casimir (conserved functional) method to (1.1). On comparing
the results of §5 and §6 we find that, for each type of flow, the stability characteristics
obtained via the energy-Casimir method are identical to those predicted by Proposi-
tion 1. We take this as proof of Proposition 1. That is, Arnol’d’s energy principle may
be extended (in the manner suggested) to forced inviscid flows of type (i)–(vii). (In
the language of Hamiltonian mechanics, this indicates that our definition of a gen-
eralized isovortical perturbation is just sufficient to identify the iso-Casimir surfaces
(or isovortical leaves) in function space.)

It is natural to enquire whether or not there is a simple relationship between the
Kelvin–Arnol’d energy principle and Hamilton’s principle of least action. In §7 we
show that there is. Specifically, stable steady flows have a Lagrangian which is a
maximum under a virtual displacement of the particle trajectories. This is, in effect, a
principle of maximum (rather than least) action.

Next, in §8 and §9, we provide a detailed physical interpretation of the stability
characteristics obtained for flows (i)–(vii). To some extent, this is performed on a case-
by-case basis. However, there is one identifiable trend. Whenever f is a prescribed
function of position, d2E is indefinite in sign. This is true for natural convection
(case i) MHD flow where B is azimuthal (case vi), and swirling recirculating flows
(case iv). We argue that the ambiguity in the sign of d2E is indicative of a true
instability of a type related to the Rayleigh–Taylor instability. We conclude §8 by
showing how to extend our ideas to flows driven by a combination of forces. For
example, we look at natural convection in the presence of a magnetic field. Here we
obtain a new stability criterion.

In §10, we discuss nonlinear stability. Here we use a finite-amplitude conservation
theorem to derive a new nonlinear stability criterion for planar MHD flows. We also
show how to extend the Kelvin–Arnol’d method to nonlinear problems.

2. A review of Arnol’d’s stability theorems
We now review Arnol’d’s stability theorems for (unforced) Euler flows. We consider

both his variational (energy) and conserved functional (energy-Casimir) approaches
to stability. Our purpose is to establish the relationship between the two methods,
and to introduce the fundamental tools of the variational method, particularly the
concept of virtual displacement fields. The review is brief. However, more details may
be found in Arnol’d (1966a, b), Moffatt (1986) and Holm et al. (1985). We might
note in passing that much of the current literature on the energy-Casimir method
is written in terms of Hamiltonian mechanics. That is, the governing equation ((1.1)
in our case) is written in symplectic Hamiltonian form and non-canonical Poisson
brackets introduced which determine the integral invariants, i.e. Casimirs. However,
the Hamiltonian and integral invariants of (1.1) are readily identified by inspection.
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Consequently, there is no particular need to adopt the Hamiltonian formulation and
we do not do so in this paper.

2.1. Arnol’d’s conserved-functional theorem and variational principle

For the sake of brevity, we shall consider only planar motion. In the steady state, the
Euler equation reduces to the statement Ω = −C ′ (Ψ ), where C is Bernoulli’s function(
p/ρ+ 1

2
u2
)
, and the streamfunction, Ψ , is defined via u = ∇ × (Ψ êz). Steady flows

are therefore governed by

∇2Ψ = −Ω (Ψ ) = C ′ (Ψ ) . (2.1)

We now review each of Arnol’d’s stability theorems as applied to (2.1). We turn
first to the variational (or energy) principle. Here our starting point is the concept of
function space, and in particular the space of all solenoidal velocity fields which satisfy
u · n = 0 on S . Adjacent points in function space represent similar velocity fields, and
so an unsteady Euler flow may be considered to trace out a curve (evolve) in this
infinite-dimensional space. This evolution is characterized by the material conservation
of vorticity and by the conservation of global kinetic energy. It is convenient, therefore,
to divide the function space into subdomains in which the vorticity fields may be
mapped one to another by a smooth volume-preserving displacement of the vorticity.
Such subdomains are referred to as isovortical sheets or leaves.

An Euler flow is constrained to follow a constant energy trajectory or contour on
an isovortical sheet. This is illustrated schematically in figure 1(a), where function
space is represented as three-dimensional. It follows that steady Euler flows represent
stationary points on these sheets; that is, points at which d1E = 0. If this point
is also an extremum in energy, so that constant-energy curves are locally elliptic,
then in some sense the flow is stable. That is, an isovortically perturbed flow will
subsequently evolve on a constant-energy contour which always lies ‘close’ to its
starting point. To clarify this idea, we use the following argument. The energy E
is conserved by any flow. Moreover, on an isovortical sheet the first variation, d1E,
vanishes at equilibrium. It follows that, in the linear approximation, d2E is conserved
by a disturbance. Now suppose that ‖du‖ is the distance (in function space) between
the perturbed flow, u = uo + du, and the steady flow whose stability is in question:
‖du‖2=

∫
(u− uo)2 dV . We now take ‖du‖2 as a measure of the disturbance. Then,

if the flow is to be unstable (in our chosen norm), ‖du‖2 will grow with time despite
the conservation of d2E. In such cases the ratio d2E/ ‖du‖2 must tend to zero.
(Note that both d2E and ‖du‖2 are quadratic in the disturbance.) Consequently,
provided this ratio can be bound away from zero, the flow cannot become unstable.
The implication is that, whenever d2E is positive or negative definite, the flow
must be stable. Indeed, we could define stability as an extremum in energy under
an isovortical perturbation. Of course, one would wish to demonstrate that this
definition coincides with more conventional notions of linear stability. A slightly
more cautious approach is taken in our generalized treatment of (1.1). That is, we
assert that stability is associated with extremums in E under a generalized isovortical
perturbation and then demonstrate that this is compatible with more familiar notions
of stability.

Now suppose that the equilibrium flow represents not an extremum but rather a
saddle point. Then adjacent energy contours diverge, so that an isovortically perturbed
flow is no longer constrained to stay close to the initial equilibrium position. Such a
flow could be, and probably is, unstable. If perturbed it will move off along (or remain
close to) one of the separatrices, which is characterized by d2E = 0. In summary, then,
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Figure 1. (a) Unsteady Euler flows follow constant-energy contours on an isovortical sheet. Stable
equilibria are represented by extremums in energy. (b) Virtual displacement AB is isovortical, while
perturbation AC is not. The Kelvin–Arnol’d energy method considers perturbations of type AB,
while the conserved-functional approach considers perturbations of type AC .

we may associate stability with extremums in E under an isovortical perturbation.
Unstable modes, on the other hand, are associated with d2E = 0. This is, in effect,
Arnol’d’s energy principle. It represents a sufficient, though not necessary, condition
for stability.

Now suppose we wish to determine the stability of some particular flow using
Arnol’d’s variational principle. We need to devise some means of evaluating d2E under
an isovortical perturbation. This leads to the concept of a virtual displacement field
(Moffatt 1986). As in Lagrangian dynamics, such a displacement simply represents
a perturbation of the generalized coordinates, and is quite arbitrary except to the
extent that the system constraints must be satisfied. In the case of Euler flows, these
constraints are conservation of volume and u · n = 0 on S . In order to ensure that
volume is conserved during a virtual displacement, it is convenient to suppose that
the displacement occurs through the action of some solenoidal velocity field, v (x),
applied for a short time τ (Moffatt 1986). If we define the displacement field η (x)
through η = vτ, then we have

∇ · η = 0, η · n = 0 on S.
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An isovortical perturbation is achieved by applying the virtual displacement field, η,
to the vorticity of a steady Euler flow. That is, we consider Ω to be advected by v
for a short time, τ. This allows us to migrate across the isovortical sheet and indeed
we may think of η as providing a local coordinate in function space for each flow
adjacent to an equilibrium. The first- and second-order changes in Ω and u are readily
shown to be (see Davidson 1994, or Moffatt 1986)

d1Ω = −η · ∇Ω; d1u = η ×Ω+ ∇φ1, (2.2)

d2Ω = − 1
2
η · ∇

(
d1Ω

)
; d2u = 1

2

(
η × d1Ω

)
+ ∇φ2, (2.3)

where φ1 and φ2 are chosen to ensure that d1u and d2u are solenoidal. Now we are
interested in how E varies as we probe the surrounding function space. It is readily
confirmed that, in accordance with Arnol’d’s theorem, d1E vanishes if u represents a
steady Euler flow. The second-order change in E is

d2E =
1

2

∫
V

[(
d1u
)2

+ 2u · d2u
]

dV =
1

2

∫
V

[(
d1u
)2

+ η ·
(
d1Ω× u

)]
dV . (2.4)

Now suppose that Ωo and Ψo are the vorticity and streamfunction of the steady Euler
flow under investigation. Then from (2.2), our expression for d2E simplifies to

d2E =
1

2

∫ [
(∇ψ)2 −

(
∇2ψ

)2
/Ω′o (Ψo)

]
dV (2.5)

where ψ is the first-order change in Ψo (Ψ = Ψo + ψ).
Expression (2.5) was first obtained by Arnol’d (1966b), and it furnishes some useful

linear stability criteria. The variational principle asserts that a flow is stable in the
energy norm whenever d2E is of definite sign for all admissible displacement fields
η, or equivalently, for all possible ψ. This is certainly the case when Ω′o (Ψo) < 0.
When Ω′o (Ψo) > 0, on the other hand, the two terms in (2.5) are of opposite sign,
but nevertheless d2E is negative definite (and the flow stable) for certain ranges of
Ω′o (Ψo). That is, for certain Ω′o, a routine eigenvalue problem furnishes the bound
d2E < −λ2

∫
(∇ψ)2 dV .

We now consider Arnol’d’s conserved-functional approach to stability. We shall see
that this leads to precisely the same stability criterion as that given above. However,
this second approach has the advantage of giving a simple explicit definition of
stability which encompasses other more familiar forms. Following Arnol’d (1966a) we
introduce the functional

A (Ψ ) =

∫
V

[
1
2

(∇Ψ )2 −
∫ Ω

o

Ψo (Ω) dΩ

]
dV (2.6)

where Ψ and Ω are the streamfunction and vorticity of some unsteady Euler flow.
The function Ψo (Ωo) is the inverse of Ωo (Ψo), the vorticity distribution of some
steady flow whose stability is under investigation, and Ψo (Ω) is a continuation of
Ψo (Ωo) outside the range of vorticity associated with the steady state. By virtue of
the material conservation of vorticity and conservation of energy, A (Ψ ) is conserved
by an unsteady flow. Now suppose that Ψ is close to Ψo, Ψ = Ψo + ψ. Then it is
readily demonstrated that the first variation in A is zero. The second variation is

δ2A =
1

2

∫ [
(∇ψ)2 −

(
∇2ψ

)2
/Ω′o (Ψo)

]
dV . (2.7)
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But A is conserved by an Euler flow and so, in the linear approximation, δ2A is
also conserved. If the flow is to be unstable (in some norm) then some suitable
measure of the disturbance, ‖ψ‖2, must grow in time despite the conservation of
δ2A. In such cases the ratio δ2A/ ‖ψ‖2 must tend to zero. Consequently, provided
this ratio can be bound away from zero, the flow cannot become unstable in our
chosen norm. (That is, linear stability is ensured if we can find bounds of the form
δ2A < −λ2 ‖ψ‖2 or δ2A > λ2 ‖ψ‖2 for all possible ψ.) Flows for which δ2A is positive
or negative definite are sometimes termed formally stable (Holm et al. 1985). This
definition encompasses our conventional notion of stability, in which unstable normal
modes grow exponentially (spectral stability).

We might (in passing) note that the δ-perturbation and d-perturbation are quite
different. The latter is constrained to stay on an isovortical sheet while the former
is unconstrained and encompasses all regions of function space surrounding an
equilibrium point. One manifestation of this difference is the fact that d1E = 0 while
δ1E is, in general, non-zero. This difference is illustrated in figure 1(b).

Comparing (2.7) with (2.5) it is evident that δ2A = d2E, and so Arnol’d’s two
stability criteria are equivalent. Note that exponentially growing unstable modes must
have a spatial structure which satisfies δ2A = 0 (for fixed ‖ψ‖). By implication, these
unstable modes must satisfy d2E = 0, which is the third constituent of Arnol’d’s
variational principle as stated in §1.

Now the equality δ2A = d2E implies that if a flow is stable to the restricted class of
isovortial perturbations then it is also linearly stable to non-isovortical perturbations.
The reason is as follows. If we have a stable equilibrium on one isovortical sheet
then in general there will be a neighbouring stable equilibrium on all adjacent sheets
(Friedlander & Vishik 1990). Consequently, if a stable flow is perturbed onto an
adjacent sheet it will find itself on a closed energy contour encircling the adjacent
equilibrium. It then orbits the new equilibrium and so remains stable.

Now both of Arnol’d’s methods are essentially variational techniques based on
finding stationary values of the energy (or an energy-like functional). We might
anticipate therefore that these different methods are fundamentally linked and we
now show that this is indeed the case. In fact, as we shall see, and as suggested
by Holm et al. (1985), the integral invariant (Casimir) which is added to E in the
conserved-functional approach is simply a form of Lagrange multiplier which arises
from the auxiliary constraint of material conservation of vorticity. Thus, although the
‘δ-perturbation’ appears to be quite general, in that we are not constrained to stay on
an isovortical sheet, in both methods we are simply finding and classifying stationary
values of E on an isovortical sheet. We may demonstrate this as follows.

Suppose we wish to find stationary values of E subject to vorticity being materially
conserved during the variation. We could, on the one hand, follow Moffatt’s method
of using a virtual displacement field which explicitly builds in this constraint. Alter-
natively, we could follow Lagrange’s method of the undetermined multiplier. In this
approach we ignore the auxiliary constraints during the variation (in this case the
material conservation of vorticity) but look for stationary values of a new functional
comprising E plus an unknown multiplier times the auxiliary constraint. Provided
the Lagrange multiplier is chosen correctly, the end result is the same. That is, we
locate stationary values of E on an isovortical sheet. The only difference between the
two methods is the manner in which the auxiliary constraint is handled. Now our
auxiliary constraint is given by (2.2) in the form

d1Ω + η · ∇Ωo = 0.
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Thus stationary values of E on an isovortical sheet are given by

d1E +

∫
λ (x)

[
d1Ω + η · ∇Ωo

]
dV = 0

where λ (x) is the Lagrange multiplier. We now choose our free parameter, λ (x), so
that the expression above is satisfied even when we lift the restriction imposed by the
auxiliary constraint. That is, we choose λ so that our equation remains valid as we
move from the restricted d-perturbation to the quite general δ-perturbation:∫ [

Ψoδ
1Ω + λ

(
δ1Ω + η · ∇Ωo

)]
dV = 0.

This must hold for all possible δ1Ω. Clearly the choice of λ = −Ψo satisfies this
requirement, since the final term in the integrand then disappears through the use of
Gauss’s theorem. It appears, therefore, that stationary values of E on an isovortical
sheet are given by

δ1E −
∫
Ψoδ

1ΩdV = 0.

We may rewrite this as

δ1A = δ1

[
E −

∫ [∫ Ω

o

Ψo (Ω) dΩ

]
dV

]
= 0.

Evidently, and as suggested by Holm et al. (1985) and Shepherd (1992), Arnol’d’s two
stability techniques represent different sides of the same coin. The integral invariant
(or Casimir) which is added to E to form A is simply a form of a Lagrange multiplier.
Nevertheless, the manner in which the methods are implemented is different and this
is important. The advantage of the conserved-functional route is that it provides a
simple clear definition of stability. On the other hand the variational (or energy)
method is, in some sense, more fundamental in that it obviates the need to determine
the appropriate form of Lagrange multiplier (Casimir) for each new type of flow.
Moreover, as we shall see, the energy method also provides nonlinear stability criteria
in precisely the same manner as the conserved-functional route.

2.2. A generalization of Arnol’d’s functional

Now, with the aid of (2.1), Arnol’d’s functional may be rewritten in an equivalent if
unfamiliar form:

A = E −
∫

[ΩΨo (M) + Co (M)] dV . (2.8)

Here Co is the Bernoulli function of a steady flow whose stability is in question, and
M = Ω. It is readily confirmed that, in this new form, δ1A = 0 and δ2A is given
by (2.7). As we shall see, this apparently minor alteration is, in fact, of considerable
significance. While (2.6) is particular to unforced planar incompressible flows, (2.8)
is the appropriate Arnol’d functional for both unforced compressible flow and, more
importantly, forced flows of the type governed by (1.1). It is necessary only to:

(i) reinterpret E as the net energy conserved by this flow;
(ii) replace M by the appropriate materially conserved quantity. In the case of

flows governed by (1.1), M = Φ. For unforced compressible flows, on the other hand,
we have M = Ω/ρ.

Subject to this generalization, the first variation in A always vanishes, while the
second variation provides the appropriate linear stability criterion. For this reason,
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we shall refer to (2.8) as the generalized version of Arnol’d’s functional. It provides
a suitable starting point for establishing formal stability for a wide range of flows.
Functionals of the form (2.8) have been used by Holm et al. to study both planar
MHD flows (type 2) and compressible baratropic flow. However, as indicated above,
(2.8) has a broader significance. Here our plan is to use (2.8), with M set equal to
Φ, to investigate the formal stability of all forced flows governed by (1.1). We then
show that precisely the same information is furnished by the variational (or energy)
approach, and we take this as proof of Proposition 1.

3. Several classes of forced two-dimensional flows
We now show that a wide range of flows conform to (1.1)–(1.3). We are interested

in both planar and poloidal motions and we start with the former. There are three
planar flows of interest here: natural convection; MHD flows in which B is trapped
in the plane of the motion; and flows driven by electrostatic forces. In the case of
natural convection the body force per unit mass is

F = −
(
ρ′g/ρ̄

)
êy = −

(
ρ′g/ρ̄

)
∇y

where ρ′ is the departure of the local density from the mean, ρ̄. Here we employ
the Boussinesq approximation, in which the fluid is incompressible and ρ′ � ρ̄. We
ignore molecular diffusion so that ρ′ is ‘frozen’ into the fluid; that is, Dρ′/Dt = 0.
Under these conditions our flow satisfies (1.1)–(1.3), with Φ = ρ′g/ρ̄, f = y and
C = p/ρ+ u2/2 + fΦ.

Next, consider an incompressible fluid of infinite electrical conductivity in which a
planar magnetic field B (x, y) =

(
Bx, By, 0

)
is trapped. Since B is solenoidal we may

introduce a flux function for B, defined via

B = (ρµ)1/2 ∇× [Φêz] .

Here µ is the permeability of the medium. If we assume that B · n is zero on S then
we may take Φ = 0 at the boundary. The Lorentz force per unit mass may now be
written as

F =
1

µρ
(∇× B)× B = −

(
∇2Φ

)
∇Φ,

while the flux function satisfies DΦ/Dt = 0. Once again we have a system which
conforms to (1.1)–(1.3). This time f = −∇2Φ, C = p/ρ + u22, and the total kinetic
energy of the fluid, E, is composed of magnetic plus kinetic energy.

Finally, let us consider motion driven by the mutual interaction of bound electric
charges. Suppose we have an incompressible fluid of negligible electrical conductivity
which contains a distribution of electric charge which is bound to the molecules. One
example is air which contains small charged dust particles. If the particles are very
fine (submicron in size) then they will move with the fluid. The charge density, q, is
materially conserved. Moreover, if the fluid velocity is not too great then the only
body force is the electrostatic one,

F = −
(
q/ρ

)
∇V , ∇2V = −q/εo.

Here V is the electrostatic potential and εo is the permeativity of the medium. Let

us now define f as
(
εo/ρ

)1/2
V and Φ as q/ (ρεo)

1/2. Then our system conforms to

(1.1)–(1.3), where ∇2f = −Φ and C = p/ρ+ u2/2 + fΦ. These results are summarized
in table 1.
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Type of flow Φ f C E

(i) Natural

convection Φ = ρ′g/ρ̄ f = y p/ρ+ u2/2 + fΦ
∫ [

fΦ+ u2/2
]

dV

(ii) MHD flow ∇× [Φêz] =
B

(ρµ)1/2
f = −∇2Φ p/ρ+ u2/2

∫
1
2

[
fΦ+ u2

]
dV

(iii) Electro-

static flow Φ = q/ (ρεo)
1/2 ∇2f = −Φ p/ρ+ u2/2 + fΦ

∫
1
2

[
fΦ+ u2

]
dV

Table 1. Forced, planar flows.

We now turn our attention to the poloidal flows (iv)–(vii) of §1. Consider first
axisymmetric swirling flow. If Γ is the angular momentum uθr, then the azimuthal
component of the Euler equation tells us that Γ is materially conserved. Also, by
virtue of the swirl, the poloidal component of motion experiences the inertial force
associated with the centripetal acceleration. Provided we choose the initial condition
to be such that Γ is zero on S , then this flow satisfies (1.1)–(1.3), where Φ = Γ 2,

f =
(
2r2
)−1

, and C = p/ρ+ u2/2 + fΦ.

Consider next an incompressible axisymmetric flow evolving under the influence
of the mutual gravitational attraction of its component parts. Let the density of the
fluid vary with position. As in example (i), the departure of the local density from
the mean, ρ̄, is assumed to be frozen into the fluid and much less than the mean,
ρ′ � ρ̄. The gravitational potential, V , is determined by ρ according to ∇2V = 4πGρ,
V = V̄ +V ′. If we let Φ = ρ′G, f = V̄ /ρ̄G and C = p/ρ+ u2/2 + ρV/ρ̄, then this flow
satisfies (1.1)–(1.3), where f is determined by ∇2f = 4π.

Next, consider the poloidal flow of an incompressible perfectly conducting fluid
which contains an azimuthal magnetic field, Bθ . The magnetic field is frozen into the
fluid and evolves so that Bθ/r is materially conserved. Also, the Lorentz force per
unit mass, F , may be written in the form

(ρµ)F = −
(
Bθ/r

)
∇ (Bθ r) = −∇

(
B2
θ

)
+
(
r2/2

)
∇
(
Bθ/r

)2
.

If we now take Φ = B2
θ/
(
ρµr2

)
, f = r2/2 and C = p/ρ+ u2/2 + 2fΦ then, once again,

our system conforms to (1.1)–(1.3).

Finally, we consider a poloidal magnetic field which is locked into a perfectly
conducting fluid and satisfies B · n = 0 on S . By analogy with the planar case we
introduce the flux function defined by

B = (ρµ)1/2 ∇×
[(
Φ/r

)
êθ
]
.

It is readily demonstrated that Φ is materially conserved, DΦ/Dt = 0, and that the
Lorentz force per unit mass is

F = −∇ ·
[
(∇Φ) /r2

]
∇Φ.

Once again, our flow conforms to (1.1)–(1.3), with f = −∇ ·
[
(∇Φ) /r2

]
and C =

p/ρ+ u2/2. These results are tabulated in table 2.
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Type of flow Φ f C E

(iv) Swirling

flow Φ = Γ 2 f =
(
2r2
)−1

p/ρ+ u2/2 + fΦ
∫ [

fΦ+ u2/2
]

dV

(v) Self-

gravitating Φ = ρ′G ∇2f = 4π p/ρ+ u2/2 + ρV/ρ̄
∫ [

fΦ+ u2/2
]

dV
flow

(vi) MHD

flow with Φ = B2
θ/
(
ρµr2

)
f = r2/2 p/ρ+ u2/2 + 2fΦ

∫ [
fΦ+ u2/2

]
dV

B, θ-field

(vii) MHD

flow with ∇×
[(
Φ/r
)
êθ
]

f = −∇ ·
[
(∇Φ) /r2

]
p/ρ+ u2/2

∫
1
2

[
fΦ+ u2

]
dV

poloidal field = B

(ρµ)1/2

Table 2. Forced, poloidal flows.

4. General properties of forced two-dimensional flow
As a prelude to our stability analysis we examine the more general properties of

flows governed by

∂u

∂t
= u×Ω− ∇C + f∇Φ, f = f (x, Φ) . (4.1)

We shall establish: (i) the energy properties of such flows; (ii) the steady-state
solutions; (iii) the integral invariants; and (iv) a finite-amplitude conservation theorem
for perturbations about a steady state. These are all essential prerequisites to our
discussion of linear (and nonlinear) stability. We start with energy.

4.1. Conservation of energy

We may show that (4.1) describes a conservative system as follows. f is not an explicit
function of time, and so the Lagrangian is a function only of u, x and Φ. But Φ
simply labels and locates the individual fluid particles. It follows that the Lagrangian
is a function only of the generalized coordinates and velocities, and conservation of
energy then follows. Now suppose we take the dot-product of u with (4.1). Then we
obtain

∂

∂t

(
u2

2

)
+ f

∂Φ

∂t
= −∇ · (Cu) . (4.2)

If, but only if, f is a prescribed function of x then (4.2) gives

E =

∫ [
fΦ+ u2/2

]
dV = constant (4.3)

which is in accordance with tables 1 and 2. Flows for which f does not depend
on time are an important subclass of (4.1) and deserve some special attention. This
includes natural convection (f = y), swirling flow

(
f = r−2/2

)
, self-gravitating flows(

∇2f = 4π
)
, and MHD flows with an azimuthal field

(
f = r2/2

)
. The distinguishing

feature of these motions is that the force acting on any one material element is a
conservative one, despite the fact that ∇×F is, in general, non-zero. That is, to within
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the gradient of a scalar, we may write F as

F = −Φ∇f (x) (4.4)

where Φ is frozen into each element of the fluid. Consequently, we are free to refer to
f as a potential and to

∫
fΦdV as the potential energy of the fluid. We may regard

the flow as evolving under a pseudo-gravitational potential, f, and with Φ playing
the role of a pseudo-density. We might anticipate, therefore, that a generic feature of
such flows is a predisposition to some kind of stratification and, as we shall see, this
is in fact the case.

To see how this stratification might come about, consider (i) an isolated region
of heavy material, (ii) an isolated circular magnetic flux tube and (iii) a hoop of
swirling fluid. A blob of (relatively) heavy fluid in a uniform gravitational field will,
of course, fall, lowering its potential energy. Similarly, a ring of swirling liquid in
an otherwise quiescent fluid will centrifuge itself radially outward, thus lowering its
azimuthal kinetic energy (Davidson 1994), and an azimuthal magnetic flux tube will,
if unimpaired, collapse radially inward, reducing its magnetic energy. In these last
two cases Φ = Γ 2 and Φ ∼ B2

θ/r
2. When viewed in terms of (pseudo-gravitational)

potentials each of these events is the same. ‘Heavy’ fluid (large Γ , Bθ/r or ρ′) will
free-fall through its potential field, lowering its potential energy. That is, in each case
the movement is such as to lower f. There is a natural tendency, then, for these flows
to become stratified with the ‘heaviest’ material at the lowest potential, although
true stratification can never be reached because there is no dissipative mechanism
available for destroying the kinetic energy liberated by the fall in potential energy.

Now the pseudo-gravitational interpretation of flows in which f is independent
of time suggests that each of these motions has a minimum potential energy state
corresponding to a vertical or radial stratification of Φ. In fact, the truth of this
is readily demonstrated using the Schwarz inequality. Let Ef represent the energy
associated with the body force. Then,

Ef >

[∫
Φ1/2dV

]2

∫
f−1dV

. (4.5)

We shall find this pseudo-gravitational viewpoint particularly useful in our inter-
pretation of certain stability results. Specifically, we shall see that, whenever f is a
prescribed function of position, the corresponding flow fails to meet Arnol’d’s stability
criterion. We argue that this is indicative of a real instability the origin of which lies
in those regions of the flow where Φ is ‘unstably’ stratified (e.g. heavy fluid flowing
over lighter fluid). The point is that confined steady solutions of (1.1) are of the form
Φ = Φ (Ψ ) and so there will always exist regions where ρ′, Γ or Bθ/r is unstably
stratified. We shall see that potential energy may be released by perturbing the flow at
such points, and consequently such regions are ‘locally unstable’ to short-wavelength
perturbations. (We use the phrase ‘locally unstable’ to indicate that the amplitude of
a local wave packet grows with time. See §9.) We argue that these local instabilities
are carried on the back of the mean flow and that this lies at the root of the global
instability.

So far we have discussed only flows in which f is a prescribed function of position.
When f is also a function of Φ, and consequently an implicit function of time, the
force acting on any one material element is no longer conservative, despite the fact
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that the overall system is conservative (Landau & Lifshitz 1959). In such instances
tables 1 and 2 give

E =
1

2

∫ [
fΦ+ u2

]
dV . (4.6)

4.2. Steady solutions

In discussing the structure of steady flows it is convenient to distinguish between
planar and poloidal motions. We start with the former. We shall exclude degenerate
(stratified) solutions of the form u = 0 and introduce the streamfunction, Ψ , defined
by u = ∇× [Ψ êz]. Then, in the steady state, (1.3) and (4.1) yield

Φ = Φ (Ψ ); C = C (Ψ ) , (4.7)

Ω = −∇2Ψ = fΦ′ (Ψ )− C ′ (Ψ ) . (4.8)

Solutions of this type are well known in the context of MHD flow. Perhaps the
simplest solutions correspond to Φ = α2Ψ 2 and C = const. The streamfunction then
satisfies

∇2Ψ + α2 (2f)Ψ = 0, Ψ = 0 on S. (4.9)

Note that the choice of α is not arbitrary, but is fixed by the shape of the domain.
We shall refer to these as linear flows, in line with their governing equation.

The equivalent results for the poloidal flows are as follows:

u = ∇×
[(
Ψ/r

)
êθ
]
, (4.10)

Φ = Φ (Ψ ) ; C = C (Ψ ) , (4.11)

Ω/r = −∇ ·
[
(∇Ψ ) /r2

]
= fΦ′ (Ψ )− C ′ (Ψ ) . (4.12)

In the interests of economy we have used the same symbol for the planar and Stokes
streamfunctions, and also for the planar and azimuthal vorticity components. The
simplest solution of (4.12) is C = const., f = f (x) and Φ = α2Ψ 2. The streamfunction
is then determined by the eigenvalue problem

∇ ·
[
(∇Ψ ) /r2

]
+ α2(2f) Ψ = 0, Ψ = 0 on S. (4.13)

We are interested in the stability of solutions of (4.8) and (4.12).

4.3. Integral invariants and generalized isovortical sheets

Although vorticity is not materially conserved by (4.1), it is preserved in a global sense,
as we shall now show. Once again it is convenient to differentiate between planar and
poloidal motion and we start with the former. Let us introduce the solenoidal vector
field H defined by

H = ∇× [Φêz] . (4.14)

Then the curl of (4.1) gives,

DΩ

Dt
= H · ∇f. (4.15)

We now integrate (4.15) over the area bounded by two adjacent Φ-lines. This yields

d

dt

∫
ΩdV =

∮
fH · dS = 0. (4.16)

Evidently, the total vorticity contained between two adjacent Φ-lines is conserved (a
form of Kelvin’s theorem). It follows that the flow possesses integral invariants of the
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form

I (Ω,Φ) =

∫
VΦ

[Ωg (Φ) + h (Φ)] dV (4.17)

where VΦ is any material volume bounded by the surface Φ = constant. As already
noted, invariants like (4.17) are essential for constructing conserved functionals of
the form (2.8), and hence to establishing formal stability. Note that a special case of
(4.17) is

∫
ΩΦdV , which is the cross-helicity of u and H .

The equivalent results for poloidal flows are

H = ∇×
[(
Φ/r

)
êθ
]
, (4.18)

D

Dt

(
Ω

r

)
= H · ∇f, (4.19)

D

Dt

∫
VΦ

[
Ω

r
g (Φ) + h (Φ)

]
dV = 0. (4.20)

As noted earlier, Arnol’d’s variational (or energy) principle rests on the idea of
unsteady Euler flows following constant-energy contours on an isovortical sheet. We
now use invariants (4.17) and (4.20) to extend this idea to forced flows. Our aim is to
define the generalized isovortical sheet (iso-Casimir surface) appropriate to (4.1) as a
prelude to our discussion of Arnol’d’s variational principle in §5. In the interests of
brevity we restrict the discussion to planar motion.

Let us introduce the composite vector field v (x, y) =
(
ux, uy, Φ

)
. Now consider

the function space of all solenoidal fields v which satisfy u · n = Φ = 0 on S .
Flows governed by (4.1) follow a trajectory (evolve) in this function space. We
now subdivide this space into lower-dimensional subdomains. To avoid inventing
additional terminology we shall refer to these as isovortical sheets. These sheets
(lower-dimensional subspaces) are defined in the following manner. Two flows v1 and
v2 are termed isovortical if:

(i) we can generate Φ2 from Φ1 by smoothly advecting Φ1 using a volume-preserving
displacement field, η (x, y), which satisfies η · n = 0 on S;

(ii) during the application of displacement field η, we preserve
∫
ΩdV for each

material strip enclosed by two adjacent Φ-lines, Φ and Φ+ δΦ.
We now define each isovortical sheet to be composed of a particular set of isovortical

flows. An unsteady motion governed by (4.1) obeys both constraints listed above and
so evolves on such a sheet. Moreover, solutions of (4.1) conserve-energy and so follow
constant-energy trajectories on a particular sheet. The situation is essentially that
shown in figure 1.

We would expect steady solutions of (1.1) to represent stationary points on such a
sheet, d1E = 0. Moreover, we might anticipate that extremal points represent stable
steady flows, while saddle points represent (potentially) unstable flows. We shall
confirm, in §5, that this viewpoint is indeed valid.

4.4. A finite-amplitude conservation theorem

We conclude this section by considering finite-amplitude perturbations to steady
solutions of (4.1). We shall show that (1.1) and (1.3) support a finite-amplitude
disturbance theorem. That is, there exists a ‘wave quantity’ b (x, t) which may be small
or finite, is quadratic in the amplitude of the perturbation (for small amplitudes), and
which is materially conserved to within the flux of a vector F which satisfies F · n = 0
on S. This is the counterpart of the McIntyre & Shepherd (1987) finite-amplitude
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disturbance theorem for unforced Euler flows and is a prerequisite for the nonlinear
stability theorems of §10. In the interests of brevity we restrict the discussion to planar
flows.

Let e be the energy density of the flow, u2/2+fΦ or u2/2+fΦ/2, and define a (x, t),
the density of Arnol’d’s functional (2.8), as

a = e− ΩΨo (Φ)− Co (Φ) . (4.21)

Here Ψo (Φo) and Co (Φo) are the streamfunction and Bernoulli function of some
steady flow around which we shall perturb. Next, we introduce a related parameter
b (x, t) defined as

b = (a− ao)− ∇ · [Ψo (Φo)∇ψ]− ∇ ·
(
g/2
)

(4.22)

where ψ = Ψ −Ψo, and g is zero for natural convection, g = φ∇Φo−Φo∇φ for MHD
flow, or fo∇f̃ − f̃∇fo for electrostatic flow where φ = Φ−Φo, f̃ = f − fo. From (4.2),
(4.6) and (4.15) it may be shown that b obeys a conservation equation of the form

Db

Dt
= ∇ · [F ] , F · n = 0 on S. (4.23)

Substituting for a (x, t) in (4.22) gives an explicit expression for b:

b (x, t) =
1

2
(∇ψ)2 + ∇2ψ [Ψo (Φ)−Ψo (Φo)] +

1

2
f̃φ (4.24)

+∇2Ψo

[
Ψo (Φ)−Ψo (Φo)−Ψ ′o (Φo)φ

]
−
[
Co (Φ)− Co (Φo)− C ′o (Φo)φ

]
. (4.25)

Evidently, b is globally conserved and is of quadratic order for small-amplitude dis-
turbances. We shall use the conservation of b to develop nonlinear stability theorems
in §10. First, however, we look at linear stability and Proposition 1.

5. The Kelvin–Arnol’d energy principle for forced flows
As noted in §4, forced conservative flows governed by (1.1) follow constant-energy

contours on an isovortical sheet. By definition, we move from one flow to another on
a sheet by smoothly advecting Φ with a solenoidal displacement field, η, subject to
the constraint that

∫
ΩdV is conserved for every material volume bounded by two

adjacent Φ-lines, Φ and Φ+ δΦ. This definition ensures that all integrals of the type∫
VΦ

[Ωg (Φ) + h (Φ)] dV (sometimes called signature functions) are conserved by a flow
as it evolves on the sheet. Proposition 1 asserts that steady flows are stationary points
on such a sheet, d1E = 0. (As in §2, we use d rather than δ to represent an isovortical
perturbation.) Moreover, we claim that stable steady flows represent extremums in
E. In this Section and the next we give an explicit proof that this is indeed the case
and, en route, we provide a simple universal recipe for evaluating d2E. Our plan is
to first evaluate d2E on an isovortical sheet and then use Proposition 1 to establish
general stability criteria for steady solutions of (1.1). Subsequently, in §6, we take the
conserved-functional route. We then show that this yields precisely the same stability
criteria, and we take this as proof of Proposition 1. We start with planar flows.

Consider the following perturbation. Suppose that, for a short time τ, we advect
both Ω and Φ by a ‘virtual’ velocity field v̂ (x, y) (satisfying ∇ · v̂ = 0 and v̂ · n = 0 on S).
Simultaneously, we rearrange the vorticity field, but in such a way that total vorticity
enclosed by each Φ-line remains constant. Both of these perturbations conserve the
net vorticity contained within two adjacent Φ-lines, and so this represents a generalized
isovortical perturbation, as defined in §1.
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We can realize this perturbation using the following evolution equations:

D̂Φ

Dt
=

(
∂

∂t
+ v̂ · ∇

)
Φ = 0; 0 < t < τ, (5.1)

D̂Ω

Dt
=

(
∂

∂t
+ v̂ · ∇

)
Ω = H · ∇ζ; 0 < t < τ, (5.2)

where ζ is an arbitrary function of position, but not a function of time. (Expressions
of this form have been used before for swirling and stratified flows. See Davidson
(1994) and Vladimirov (1987).) Expression (5.1) satisfies the first requirement, that
Φ be materially advected, while (5.2) fulfils the second requirement that the total
vorticity enclosed by each Φ-line is conserved during the displacement. The similarity
between (5.1) and (5.2), on the one hand, and the governing equations (4.15) and (1.3),
on the other, is not accidental. These equations mimic the action of a real velocity
field in perturbing Ω and Φ, although E is not, in general, conserved by (5.1) and
(5.2). Note that we may vary the manner in which Ω is redistributed within each
Φ-line by changing ζ (x, y). It follows that (5.1) and (5.2) are the most general form
of isovortical perturbation. The application of these virtual displacements to a steady
solution of (1.1) allows us to migrate at will across an isovortical sheet, exploring
adjacent flows.

We now introduce η and λ, defined by

η = v̂τ; λ = ∇× [ζêz] τ.

As in §2, η is a virtual displacement field, which satisfies ∇ · η = 0 and η · n = 0 on S .
From (5.1) and (5.2), the first- and second-order changes in Φ and Ω may be written
in terms of η and λ as follows:

d1Φ = −η · ∇Φ, (5.3)

d1Ω = −η · ∇Ω − λ · ∇Φ, (5.4)

d2Φ = − 1
2
η · ∇

(
d1Φ

)
, (5.5)

d2Ω = − 1
2
η · ∇

(
d1Ω

)
− 1

2
λ · ∇

(
d1Φ

)
, (5.6)

d1u = ψ̂∇Ω + (ζτ)∇Φ+ ∇φ1, (5.7)

d2u = 1
2
ψ̂∇
(
d1Ω

)
+ 1

2
(ζτ)∇

(
d1Φ

)
+ ∇φ2, (5.8)

where ψ̂ is the streamfunction for η and φ1 and φ2 are chosen to ensure d1u and d2u
are solenoidal. Now, for the flows listed in table 1, the first-order change in energy is

d1E =

∫ (
u · d1u+ fd1Φ

)
dV . (5.9)

If we assume that u represents a steady solution of (1.1), and substitute for d1u and
d1Φ, we find d1E = 0. This confirms the first part of Proposition 1, at least for planar
flows.

The second and third parts of Proposition 1 concern the second variation in E.
This is given by

d2E =

∫ [
1
2

(
d1u
)2

+ uo · d2u+ fod
2Φ+ 1

2
d1Φ d1f

]
dV (5.10)
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which, on substituting for d2u and d2Φ becomes

d2E =
1

2

∫ [
(∇ψ)2 + (ζτ) uo · ∇φ+ ∇2ψ (uo · ∇ψ̂)− foη · ∇φ+ φf̃

]
dV .

Here we have introduced the notation φ = d1Φo, ψ = d1Ψo and f̃ = d1fo. Note that
φ and ψ are kinematically independent scalar fields, in that φ is a function only of η,
while ψ depends on both ζ and η. Note also that φ and ψ are not arbitrary but are
governed by (5.3) and (5.4). We now use the divergence theorem, in conjunction with
(4.8), to rewrite d2E as

d2E =
1

2

∫ [
(∇ψ)2 + 2

(
∇2ψ

)
ε+

[
Φ′′o (Ψo) fo − C ′′o (Ψo)

]
ε2 + φf̃

]
dV

where ε = Ψ ′o (Φo)φ = −η · ∇Ψo. The functions Φo (Ψo) and Co (Ψo) describe some
steady solution of (1.1) whose stability is under investigation. Finally, we introduce γ,
defined as γ = ε− ψ. (Note that γ and ε are kinematically independent.) This allows
us to express d2E in terms of ε and γ, rather than ψ and φ:

d2E =
1

2

∫ [
(∇γ)2 − (∇ε)2 + g∗ε2 +

(
Φ′of̃

)
ε
]

dV . (5.11)

Here g∗ contains all the residual information on the base flow, and is given by

g∗ = foΦ
′′
o (Ψo)− C ′′o (Ψo) . (5.12)

Proposition 1 states that stable flows correspond to d2E being positive or negative
definite, and that exponentially growing normal modes must have a spatial structure
which satisfies d2E = 0. We shall prove this assertion (via the conserved-functional
route) in the next section. Here we merely note that (5.11) provides a stability test for
all planar solutions of (1.1).

We shall postpone our detailed examination of (5.11) until §8, where we establish
the conditions under which d2E is of definite sign for all possible ε and γ. We shall see
that, at least for certain types of flow, this leads to a sufficient condition for stability.
In the meantime, we might note that whenever f is a prescribed function of position,
so that (as far as each material element is concerned) the body force is conservative,
d2E takes the simple form

d2E =
1

2

∫ [
(∇γ)2 − (∇ε)2 + g∗ε2

]
dV .

In such cases, d2E is always indefinite in sign. For example, for short-wavelength
disturbances the final term in the integrand can be neglected and so d2E may be
positive or negative depending on whether ‖γ‖ is larger or smaller than ‖ε‖. We
shall argue, in §8, that this failure to meet our stability criterion is indicative of a real
instability.

The application of Arnol’d’s variational principle to forced poloidal flows is, to all
intents and purposes, the same as for planar flows. In the interests of brevity we will
not repeat the arguments here. We merely note that the perturbation equations (5.1)
and (5.2) are replaced by

D̂Φ

Dt
= 0; 0 < t < τ,

D̂

Dt

(
Ω

r

)
= H · ∇ζ; 0 < t < τ,
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and that the corresponding changes in energy are d1E = 0 and

d2E =
1

2

∫ [
(∇γ)2 r−2 − (∇ε)2 r−2 + g∗ε2 +

(
Φ′of̃

)
ε
]

dV .

Here γ, ε, g∗, Φ′o and f̃ are defined as for planar flows. Note that, as with the planar
flows, d2E is of indefinite sign whenever f is a prescribed function of position. This
suggests instability.

6. An explicit proof of Proposition 1 via the conserved-functional method
We now apply Arnol’d’s conserved-functional method to solutions of (1.1). We shall

see that the resulting stability criteria are identical to those predicted by Proposition 1,
and we take this as proof of our Proposition. The proof relies on the existence of the
integral invariants (4.17) and (4.20), and is inspired by the generalization of Arnol’d’s
functional (2.8). We start with a second proposition.

Proposition 2. Suppose Ψo (Φo) and Co (Φo) are the streamfunction and generalized
Bernoulli function of some steady solution of (1.1) whose stability is under investigation.
Then, for planar flows, an appropriate generalization of Arnol’d’s functional is

A (Ψ,Φ) = E −
∫

[ΩΨo (Φ) + Co (Φ)] dV . (6.1)

For poloidal flows, on the other hand, the appropriate form is

A (Ψ,Φ) = E −
∫ [(

Ω/r
)
Ψo (Φ) + Co (Φ)

]
dV . (6.2)

In either case A is conserved by an unsteady flow, its first variation vanishes, and the
sign of δ2A provides information on the stability of the motion.

At this point we might make four comments. First, the invariance of A follows
directly from (4.17) and (4.20). Second, in line with the notation in §4, Ω and Ψ
take on slightly different meanings in the planar and poloidal cases. Third, we shall
prove Propositions 1 and 2 only for the seven cases outlined in §3. However, it seems
reasonable to expect this to hold for all solutions of (1.1). Finally, functionals similar
to (6.1) have been used before for certain specific flows, most notably by Holm et al.
in the investigation of planar MHD flow. However, we contend that (6.1) and (6.2)
have a more universal significance, at least for flows of type (1.1), as we now show.

For convenience, we shall consider planar and poloidal motions separately. We
start with planar flows. As before, we define φ, ψ and f̃ via the expressions f = fo+ f̃,
Φ = Φo + φ and Ψ = Ψo + ψ. (For cases where f is a prescribed function of
position, f̃ = 0.) Of course, φ and ψ represent the departure of an unsteady flow from
equilibrium. In a linear stability analysis we assume ψ � Ψo and φ � Φo although,
for the moment, we need not make this approximation.

Let Ao be the value of A at equilibrium. Then it is not difficult to show that, for
the flows listed in table 1,

A− Ao =

∫ [
1
2

(∇ψ)2 + ∇2ψ [Ψo (Φo + φ)−Ψo (Φo)]

+∇2Ψo

[
Ψo (Φo + φ)−Ψo (Φo)−Ψ ′o (Φo)φ

]
−
[
Co (Φo + φ)− Co (Φo)− C ′o (Φo)φ

]
+ 1

2
f̃φ
]

dV . (6.3)
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This form of A − Ao is suitable for investigating nonlinear stability, where the ex-
pressions in brackets are replaced by the remainder term in a truncated Taylor series
(see §10). An alternative means of establishing the invariant (6.3) is to use the finite-
amplitude conservation theorem of §4.4. In any event, it is evident from the form of
A − Ao that, when φ and ψ are small, all first-order terms in the integrand vanish,
and so δ1A = 0. The second variation in A, on the other hand, is readily shown to be

δ2A (ε, γ) =
1

2

∫ [
(∇γ)2 − (∇ε)2 + g∗ε2 +

(
Φ′of̃

)
ε
]

dV . (6.4)

Here we have replaced ψ and φ by ε = Ψ ′o (Φo)φ and γ = ε − ψ. The function g∗

contains the residual information about the base flow and is defined by (5.12). Note
that δ2A = d2E.

Now A is conserved by an unsteady flow and so, in the linear approximation, δ2A
is also conserved. Suppose that ‖(ψ, φ)‖2 is some suitable measure of the disturbance,
say

‖(ψ, φ)‖2=

∫
(∇ψ)2 dV +

∫
(∇φ)2 dV . (6.5)

Then an unstable normal mode requires ‖ (ψ, φ)‖2→ ∞ as t → ∞. Thus, spectral
instability requires δ2A/ ‖ψ, φ‖2→ 0. (We assume that linear instability sets in as
some exponentially growing mode, and we exclude those cases where initial algebraic
growth gives way to exponential decay at large times.) We conclude, therefore, that if
δ2A can be bound away from zero for all kinematically admissible forms of ψ and φ,
then the flow must be stable. In short, a sufficient condition for stability is that δ2A is
positive or negative definite. Moreover, if the flow is unstable, exponentially growing
modes have a spatial structure which ensures δ2A = 0. This confirms Proposition 2
for planar flows. More importantly, though, we have also proved Proposition 1. The
point is that δ2A = d2E and so when δ2A is positive or negative definite, so is
d2E. It follows that a maximum or a minimum of E on an isovortical sheet does
indeed ensure stability, as predicted by the second part of Proposition 1. Moreover,
exponentially growing normal modes have a spatial structure which satisfies δ2A = 0
and so they must also satisfy d2E = 0. This confirms the third part of Proposition 1,
at least for the planar flows listed in table 1. We suspect, but have not proved, that
these results extend to all planar solutions of (1.1).

Let us now turn our attention to poloidal flows. If we linearize (6.2) about the
steady flow (Ψo,Φo) then, as with the planar case, δ1A = 0. The second variation in
A is readily shown to be

δ2A (ε, γ) =
1

2

∫ [
(∇γ)2 r−2 − (∇ε)2 r−2 + g∗ε2 +

(
Φ′of̃

)
ε
]

dV (6.6)

where, as before, ε = Ψ ′o (Φo)φ, γ = ε − ψ, and g∗ is given by (5.12). Now A is
an invariant and δ1A = 0. Consequently, δ2A is conserved by any unsteady motion.
Following the argument given for planar flows, stability then corresponds to δ2A being
of definite sign, which confirms Proposition 2 for poloidal flows. More importantly,
though, δ2A = d2E and so stability corresponds to extremums in E on an isovortical
sheet. This confirms Proposition 1 for the poloidal flows of table 2.

We conclude, therefore, that Propositions 1 and 2 do indeed hold for the seven
classes of flow given in tables 1 and 2. Of course we have not yet determined which,
if any, of the flows (1)–(vii) are stable. We have noted only that the cases where
f is a prescribed function of position are potentially unstable. We leave a detailed
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investigation of the sign of d2E until §8, where we examine stability on a case by case
basis.

7. A third stability criterion
It is natural to enquire whether an energy principle of the type described in

Proposition 1 is, in some simple way, related to Hamilton’s principle of least action.
We show here that a simple connection does indeed exist. We also describe a simple
relaxation scheme for finding steady solutions of (1.1).

7.1. A new stability criterion based on the Lagrangian

Proposition 3. Systems described by (1.1) and (1.3) are stable whenever the Lagrang-
ian is a maximum with respect to a virtual displacement of the particle trajectories.

This might best be described as a principle of maximum (rather than least) action.
It should be emphasized that the virtual displacement used here is different to that
employed in either of the earlier stability theorems. Rather, it is of the type normally
associated with Hamilton’s principle, in which the system trajectory is perturbed in
configuration space in such a way that the time of flight for each particle is preserved.
Note that this proposition is, in effect, a direct extension of the stability criteria for
static systems used, for example, in the magnetostatics of ideal fluids.

In order to prove Proposition 3 it is convenient to consider first a simpler system
with a finite number of degrees of freedom. Suppose we have N interacting particles,
each of fixed mass mi and each with a particular (conserved) value of Φ, say Φi.
Suppose moreover that these particles interact and evolve according to

mi
dui
dt

= −Φi∇ifi (r1, r2, . . . rN) (7.1)

where ri are the position vectors of the particles and the subscript on ∇ implies
differentiation with respect to ri. Perhaps the simplest examples of such a system are:
(i) a set of (slowly moving) charged masses subject to mutual electrostatic forces; and
(ii) a self-gravitating set of masses.

Now fi does not depend explicitly on time. Since fi is uniquely determined by
the instantaneous particle configuration the system is conservative with an energy, E,
given by E = T +V , where T is the total kinetic energy and V is the potential energy
associated with the force, −Φ∇f. The Lagrangian for the system is L = T − V . Now
Hamilton’s principle tells us that, out of all the possible paths the system could travel
from its initial position at time t1 to its final position at t2, it will actually follow the
path for which the action integral

I =

∫ t2

t1

Ldt

is stationary. Crucially, this is also true for the Lagrangian of each individual mass
mi. Now suppose that we perturb each particle one at a time, and that the true and
perturbed trajectories are cyclic in the sense that all particle paths are closed and
the particle velocities return to their original value on completing their cycles. Then
provided the recirculation time, τ, is the same for the true and perturbed paths the
action integral for each particle will be stationary. This is also true if we perturb the
particle paths simultaneously, each with their separate travel times τ (Davidson 1994).
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We must now translate these ideas into the language of fluid mechanics. Each fluid
particle governed by (1.1) obeys an equation of the form of (7.1), except that we must
add a pressure force to the right-hand side. However this pressure term is a ‘force
of constraint’ whose function is to maintain conservation of volume. Provided that
this constraint is observed during a virtual displacement the pressure force will do no
net work (Davidson 1994). As such, it may be ignored in a Lagrangian formulation.
If L is the Lagrangian density then, for each fluid particle moving around a closed
streamline, we have

d1

∮
Ldt = 0

provided, of course, that the recirculation time is unchanged by the perturbation.
Now consider a streamtube bounded by two adjacent streamlines, Ψ and Ψ + δΨ .
Then

dt = d`/ |u |= dV/ |δΨ |
where ` is the distance along the Ψ -line and dV is the volume of the streamtube
associated with d`. (For poloidal flows we must divide the right-hand side of this
expression by a factor 2π.) Our integral with respect to time can now be replaced by
a volume integral over the streamtube:

d1

∮
Ψ

LdV = 0.

Adding all such contributions from individual streamtubes we find

d1

∫
V

LdV = d1L = 0.

In summary, then, Hamilton’s principle tells us that the (global) Lagrangian for the
fluid is stationary provided: (i) the recirculation time for each streamline is preserved
by the perturbation; (ii) the perturbation conserves volume; and (iii) Φ is materially
conserved by each fluid particle during the perturbation.

We now demonstrate that stable solutions correspond to maxima in L. The first
step is to find a perturbation which satisfies the three conditions above. Surprisingly,
it turns out that such a perturbation is readily constructed.

Suppose that we perturb Ψ and Φ by the same virtual displacement field, η. (As
usual, we insist that ∇ · η = 0.) Then each fluid particle finds itself in a new trajectory,
as defined by the new Ψ -lines, while retaining its original value of Φ. The second and
third conditions above are therefore satisfied. Moreover, such an approach guarantees
that the recirculation time, τ (Ψ ), for each streamline is the same for the true and
perturbed paths. This follows from

τ (Ψ ) = −dVΨ/dΨ (7.2)

where VΨ is the volume enclosed by a streamline. Conservation of VΨ , which is a
consequence of ∇ · η = 0, automatically ensures conservation of τ. Our perturbation
therefore satisfies all three requirements. We may now evaluate δ1L directly. As in §5,
we imagine that the virtual displacement is achieved by advecting Ψo and Φo by an
imaginary velocity field, v, for a short period of time. This leads to

d1Ψ = ψ = −η · ∇Ψo, d2Ψ = − 1
2
η · ∇

(
d1Ψ

)
,

d1Φ = φ = −η · ∇Φo, d2Φ = − 1
2
η · ∇

(
d1Φ

)
.
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Note that, unlike the perturbation used in §5, ψ and φ are not independent, but are
related by φ = Φ′oψ. For planar flows of the type listed in table 1, the first variation
in L is

d1L =

∫
[∇Ψo · ∇ψ − foφ] dV .

The divergence theorem, in conjunction with (4.8), then gives d1L = 0. Thus, as
required by Hamilton’s principle, L is stationary. (The equivalent result for poloidal
flows is readily established.)

Now consider the second variation in L. For the planar flows listed in table 1 this
is given by

d2L =
1

2

∫ [
(∇ψ)2 − g∗ψ2 −

(
Φ′of̃

)
ψ
]

dV .

The equivalent result for poloidal flows is

d2L =
1

2

∫ [
r−2 (∇ψ)2 − g∗ψ2 −

(
Ψ ′of̃

)
ψ
]

dV .

Let us now change notation and write ε = −η · ∇Ψo in line with §5. Then ε replaces
ψ in our expressions for d2L. If these expressions are now compared with (5.11) and
(5.13), which give the change in E under an isovortical perturbation, then we find

d2E =
1

2

∫
(∇γ)2 dV − d2L (x, y motion), (7.3a)

d2E =
1

2

∫
(∇γ)2 r−2dV − d2L (r, z motion). (7.3b)

In either case d2E is positive definite whenever d2L is negative definite. It follows
immediately that stability is ensured whenever L is a maximum, and this proves
Proposition 3. We have, in effect, a new stability criterion. Remarkably, this holds
not only for flows of type (i)–(vii) but is also true for three-dimensional Euler flows
and, as we shall see in §8, it is true for flows driven by more than one body force.
For example, natural convection subject to a magnetic field is stable whenever the
Lagrangian is a maximum.

7.2. Relaxation schemes for finding stable steady flows

One of the advantages of Arnol’d’s energy principle is that it leads quite naturally to
relaxation schemes for finding stable steady solutions of (1.1), as we now demonstrate.
The scheme described here is related to, but distinct from, that introduced by Shepherd
(1992). Our starting point is the perturbation equations (5.1) and (5.2), or their
equivalent for poloidal flow. Let us begin with the planar case.

Now we know that the evolution equations (5.1) and (5.2) cause some initial flow
(Φ,Ω) to migrate across an isovortical sheet. Up until now we have considered small
migrations, in which (5.1) is applied for a short time τ. Suppose we now consider
large-scale migrations which occur for finite periods of time, according to

D̂Φ

Dt
= 0,

D̂Ω

Dt
= H · ∇f, (7.4)

v̂ = u+ α
∂u

∂t
; α = constant. (7.5)

We may think of v̂ as a continuously evolving form of Arnol’d’s virtual displacement
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field. This particular system of equations is reminiscent of those proposed by Vallis,
Carnevale & Young (1989) for finding stable steady solutions of the unforced Euler
equations. They have some interesting properties. Specifically, while remaining on
an isovortical sheet, they cause E to increase (for α < 0) or decrease (for α > 0)
monotonically until such time that the flow reaches a steady state (assuming that a
steady state exists on the sheet). Moreover, once a steady state is achieved, (7.4)–(7.5)
revert to the forced system (1.1)–(1.3).

To demonstrate that E continually increases or decreases we first uncurl (7.4) to
give

∂u

∂t
= v̂ ×Ω− ∇C + f∇Φ. (7.6)

The product of (7.6) with v̂ yields,

dE

dt
= −α

∫ (
∂u

∂t

)2

dV . (7.7)

Evidently, (7.4)–(7.5) cause an arbitrary initial condition to migrate across an isovor-
tical sheet, hunting out a maximum or minimum in energy. There are three likely
outcomes of this procedure: E → 0, E → ∞, or an extremum in E is reached. In the
latter case the relaxation equations provide a stable steady solution of (1.1). (A fourth
possibility is that E remains finite but that there are no steady solutions on the sheet.
This generally leads to infinite straining of the fluid.)

In order to guarantee non-trivial solutions we need to ensure that a steady solution
lies on the sheet and find an upper or lower bound for E on each isovortical sheet.
However, such bounds are readily obtained. For flows where f is a prescribed function
of position (4.5) furnishes a lower bound, corresponding to a stratification of Φ. For
planar MHD flow, on the other hand, we may use the calculus of variations to place
a lower bound on E. That is,

E > Ef =
1

2

∫
(∇Φ)2 dV > λo

1

2

∫
Φ2dV (7.8)

where λo is the least eigenvalue of

∇2Φ+ λΦ = 0, Φ = 0 on S .

The integral on the right is conserved on a sheet, and so (7.8) provides an appropriate
lower bound for flows of type (ii). The equivalent results for poloidal MHD flow
(case vii) are obtained by replacing Ω by Ω/r in (7.4) and using the bound

E > Ef =
1

2

∫ [
(∇Φ)2 r−2

]
dV > λo

1

2

∫
Φ2dV (7.9)

where λo is the minimum eigenvalue of

∇ ·
[

1

r2
∇Φ
]

+ λΦ = 0, Φ = 0 on S.

8. Stability criteria
We have not, so far, examined the conditions under which E is a maximum or a

minimum, and so we have produced no specific stability criteria. We shall do this
here. Of course, not all of the criteria that emerge are new. Many of these flows have
been investigated before using the energy-Casimir method. However we do develop
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new criteria in §8.2. We start with the simple cases, where our aim is to show that our
general expressions for d2E give results compatible with known stability criteria.

8.1. Familiar stability criteria

We start with planar flows. We have, from §5,

d2E =
1

2

∫ [
(∇γ)2 − (∇ε)2 + g∗ε2 +

(
Φ′of̃

)
ε
]

dV (8.1)

where f̃ takes the form: f̃ = 0 (natural convection); f̃ = −∇2
[
Φ′oε
]

(MHD flow);

∇2f̃ = −Φ′oε (electrostatic flow). Note that γ and ε are kinematically independent in
the sense that ε = ε (η) and γ = γ (η, ζ). For natural convection, d2E simplifies to

d2E =
1

2

∫ [
(∇γ)2 − (∇ε)2 + g∗ε2

]
dV . (8.2)

As noted earlier, this is of indefinite sign for short-wavelength disturbances. All such
flows are therefore potentially unstable. The most that we can deduce from (8.2) is
that exponentially growing normal modes must have a spatial structure which satisfies
d2E = 0. It is not difficult to show that d2E is also indefinite in sign for electrostatic
flows.

Consider now MHD flow (case ii). Here d2E takes the form

d2E =
1

2

∫ [
(∇γ)2 − (∇ε)2 + g∗ε2 +

(
∇
(
Φ′oε
))2
]

dV .

This may be rearranged to give

d2E =
1

2

∫ [
(∇γ)2 +

[
1−

(
Ψ ′o
)2
]

(∇φ)2 + ĝφ2
]

dV (8.3)

where

ĝ = Ψ ′o∇2Ψ ′o +Ψ ′′o∇2Ψo − C ′′o (Φo) . (8.4)

Stability criteria are readily extracted from (8.3). Evidently, a necessary condition for
d2E to be single signed is |Ψ ′o| < 1: that is, |u| is less than the Alfvén velocity. Indeed
both Holm et al. (1985) and Vladimirov et al. (1996) note that a sufficient condition
for stability is |Ψ ′o| < 1, and ĝ > 0. In fact, we can go further than this and identify
stable steady flows in which ĝ < 0. Consider the eigenvalue problem

∇2φ+ λhφ = 0, φ = 0 on S. (8.5)

If we equate h to |ĝ|/
[
1−

(
Ψ ′o
)2

max

]
, then it is not difficult to show that the last

two contributions to the integral in (8.3) may be bounded from below by a positive
number whenever the least eigenvalue λo of (8.5) is greater than unity. Thus, stability
of type (ii) flows is ensured whenever

|Ψ ′o |< 1 and ĝ > 0 (8.6a)

or

|Ψ ′o |< 1, ĝ < 0, and λo > 1. (8.6b)

In either case stable steady flows represent a minimum energy state. (A specific
example of a flow whose stability rests on condition (8.6b) is given by Ψ ′o = α,
and C ′′o = λ. Here α and λ are constants and λ is the least eigenvalue of ∇2Ψo +
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1− α2

)−1
λΨo = 0.) In §10 we shall show that these linear criteria may be extended

to finite-amplitude perturbations.
We now consider the poloidal flows (iv)–(vii). Here d2E takes the form

d2E =
1

2

∫ [
(∇γ)2 r−2 − (∇ε)2 r−2 + g∗ε2 + Φ′of̃ε

]
dV (8.7)

where f̃ = 0 for all types of flow other than (vii). In cases where f̃ = 0, d2E simplifies
to

d2E =
1

2

∫ [
(∇γ)2 r−2 − (∇ε)2 r−2 + g∗ε2

]
dV (8.8)

which is of indefinite sign. As with natural convection, the most that we can deduce
from (8.8) is that exponentially growing normal modes must have a spatial structure
that satisfies d2E = 0. We consider such modes in more detail in §9.

Finally we turn to poloidal MHD flows of type (vii). Here (8.7) becomes

d2E =
1

2

∫ [
(∇γ)2 r−2 − (∇ε)2 r−2 + g∗ε2 +

(
∇
(
Φ′oε
))2

r−2
]

dV . (8.9)

This may be rearranged to give

d2E =
1

2

∫ [
(∇γ)2 r−2 +

[
1−

(
Ψ ′o
)2
]

(∇φ)2 r−2 + ĝφ2
]

dV (8.10)

where, this time, ĝ is defined as

ĝ = Ψ ′o∇ ·
[
r−2∇Ψ ′o

]
+Ψ ′′o∇ ·

[
r−2∇Ψo

]
− C ′′o (Φo) . (8.11)

If we compare this with the planar case then it is evident that the stability of type
(vii) flows is guaranteed whenever conditions (8.6a) and (8.6b) above are satisfied. The

only difference is that we must set h = |ĝ| r2/
[
1−

(
Ψ ′o
)2

max

]
in (8.5). Stability criteria

for poloidal flows are discussed in Vladimirov, Moffatt & Illin (1997).

8.2. New stability criteria

As indicated in §2, the energy and conserved-functional approaches to stability are
closely related. However, the advantage of the energy formulation lies in its generality.
For example, if we accept that Proposition 1 is true for all solutions of (1.1), and not
just for the seven cases discussed here, then it is also true for flows driven by composite
body forces of the form f1∇Φ1 + f2∇Φ2. (This may be proven by the energy-Casimir
method in the manner of §6, although we will not pause to do so here.) It is then a
trivial matter to extend the method to more complex systems. Consider, for instance,
planar natural convection in the presence of a planar magnetic field. (The equivalent
axisymmetric problem has been considered by Friedlander & Vishik 1990.) We know
that natural convection alone is (probably) unstable, while a magnetic field can be
stabilizing. We might anticipate, therefore, that a sufficiently strong magnetic field will
stabilize the flow. We have, in effect, a combination of type (i) and type (ii) flows. Let
Φ1 and Φ2 represent the density and magnetic flux functions respectively, and f1 and
f2 be their corresponding potentials. Steady flows satisfy a generalization of (4.8):

Ω = f1Φ
′
1 + f2Φ

′
2 − C ′ (Ψ ) . (8.12)

Now Φ1 and Φ2 are constant along streamlines in the steady state. Consequently,
in the unperturbed state isolines of Φ1 and Φ2 coincide. Moreover, Φ1 and Φ2 are
both displaced with the fluid particles during the initial perturbation, and since Φ1
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and Φ2 are subsequently frozen into the fluid we have Φ1 = Φ1 (Φ2) at all times.
This is a sufficient condition for the existence of integral invariants of the type (4.17).
Consequently, we can determine the isovortical perturbations using a simple extension
of the evolution equations (5.1) and (5.2):

D̂Φ1

Dt
=

D̂Φ2

Dt
= 0,

D̂Ω

Dt
= H2 · ∇ζ; 0 < t < τ. (8.13)

Note that we have used H2, the scaled magnetic field, on the right-hand side of the
vorticity equation (8.13). However, we could equally use H1, since contours of Φ1, and
Φ2 are both frozen into the fluid during the perturbation. Following the procedure
outlined in §5 it is readily confirmed that d1E = 0, while d2E is given by

d2E =
1

2

∫ [
(∇γ)2 +

((
Φ′2
)2 − 1

)
(∇ε)2 + ĝ∗ε2

]
dV . (8.14)

Here γ and ε are defined in the same way as before (ε = −η · ∇Ψo, γ = ε− ψ) and ĝ∗

is given by

ĝ∗ = Φ′′1f1 + Φ′′2f2 − C ′′ (Ψ )− Φ′2∇2Φ′2. (8.15)

Evidently, stability corresponds to Φ′2 > 1 (the flow is sub-Alfvénic) and ĝ∗ > 0. No
doubt we could obtain the same criterion by other means. However, the key point
is that this stability criterion has been obtained quite simply and automatically and
without the need to hunt for the appropriate Casimir.

We conclude by noting that the results of §7 also extend to flows driven by a
composite body force. That is, the flow is stable whenever the Lagrangian L is a
maximum under a variation of the particle trajectories in configuration space. We
may establish this using the same procedure as outlined in §7. In the interests of
brevity we omit the details here. We merely note that, following the logic of §7, we
may show:

d2E =
1

2

∫
(∇γ)2 dV − d2L (planar flow),

d2E =
1

2

∫
(∇γ)2 r−2dV − d2L (poloidal flow).

Thus, whenever d2L is negative definite, d2E is positive definite, and from Proposition 1
stability is ensured (provided we accept Proposition 1 in its most general form). It
is remarkable that stability may be determined for such a broad class of flows by
examining only L. It is tempting to speculate that there is some general principle
underlying this result.

9. Stability of flows in which f is a prescribed function of position
We now consider those cases where f is a prescribed function of position. So far,

we have noted the following properties of these motions.
(i) They all fail to meet Arnol’d’s energy criterion, and so are potentially unstable.
(ii) As far as each fluid particle is concerned, the body force is conservative, with

a potential f, and the total energy is composed of kinetic plus potential energy. By
analogy with natural convection, we may think of f as a pseudo-gravitational field
and Φ as a (materially conserved) pseudo-density. (See §4.1.)



250 P. A. Davidson

(iii) The potential energy may be minimized by placing the ‘heaviest’ fluid (large
Φ) at regions of lowest potential, and this results in a radial or vertical stratification
of Φ. (See equation (4.5).)

(iv) Steady solutions (other than degenerate stratified ones) are of the form Φ =
Φ (Ψ ) and so in simply connected domains there are always regions where Φ (the
pseudo-density) increases with increasing potential.

Intuitively, we would expect all flows of this type to be unstable, with the instability
rooted in the region of adverse stratification (where Φ increases with increasing f).
We now argue that this is indeed the case. We do not provide a formal proof, but
rather provide a simple physical explanation for why an instability is likely.

The argument is as follows. As we shall see, short-wavelength disturbances are
convected by the mean flow, in the sense that the phase and group velocities of a
wave packet are much less than the characteristic speed of the base flow. Moreover,
such disturbances grow exponentially in regions of ‘adverse’ stratification and oscillate
in a neutral manner in regions of ‘stable’ stratification. The fact that the streamlines
are closed, so that individual fluid elements are continually swept through both
regions, suggests (but does not guarantee) that any disturbance will ultimately grow,
violating the requirements of formal stability.

We now justify this picture. Our starting point is to note that E may be divided into
kinetic and potential energy. The contribution to d2E from the potential energy is

d2Ef =

∫
fod

2ΦdV = −1

2

∫
(η · ∇fo) (η · ∇Φ) dV . (9.1)

Now suppose the displacement field, η, is a local rotation in the (x, y)- or (r, z)-
plane, applied over a very small area centred on (xo, yo) or (ro, zo). Then, for natural
convection, swirling flow, and flow driven by an azimuthal magnetic field, we obtain

d2Ef =
1

4
Πi

∫
η2dV , (9.2)

Π1 = −
[
g

ρ̄

∂ρ′

∂y

]
o

(square of the Väisälä–Brunt frequency), (9.3)

Π4 = +

[
1

r3

∂Γ 2

∂r

]
o

(Rayleigh’s discriminant), (9.4)

Π6 = − (ρµ)−1

[
r
∂

∂r

(
Bθ

r

)2
]
o

. (9.5)

Each of these expressions for Π represents the square of the frequency of oscillation of
neutral modes in a quiescent stably stratified fluid. Adverse stratification corresponds
to negative Π . Evidently, potential energy may be released by perturbing the flow
in regions of negative Π: that is, where ρ′ increases with y, Γ 2 decreases with r, or
|Bθ/r | increases with r. We might anticipate that short-wavelength disturbances grow
in such regions and we shall see that this is indeed the case.

Perhaps this behaviour is not surprising. It is well known that parallel horizontal
flow which is subject to a vertical stratification of density, or a swirling pipe flow
(0, uθ, (r), uz (r)), is stable to short-wavelength disturbances if and only if the appro-
priate Π is positive. That is, the horizontal (or axial) component of motion has
no influence on the stability of the flow, at least for short wavelengths. Stability is
controlled simply by the stratification of ρ or Γ . Now in our case a small wave packet
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of very short wavelength is unaware of the curvature of the streamlines provided it is
not too close to a stagnation point. It sees only a (locally) parallel flow in which the
streamlines are aligned with the surfaces of constant density or angular momentum.
We would expect, therefore, that such a perturbation will grow exponentially when-
ever Πi is (locally) negative. We now prove this. In the interests of brevity we restrict
the discussion to planar flows.

Let Φ = Φo + φ and Ψ = Ψo + ψ. Then for planar flows, (4.15) and (1.3) yield

Dφ

Dt
=

(
∂

∂t
+ uo · ∇

)
φ = Φ′o (Ψo) uo · ∇ψ,

D

Dt

(
∇2ψ

)
+ uo · ∇

(
g∗ψ

)
=
[
∇
(
φ− Φ′oψ

)
× ∇f

]
z
.

It is convenient to replace φ by γ = Ψ ′oφ−ψ, and to equate fo to y in line with flows
of type (i). In this case our equations simplify to

Dγ

Dt
= −∂ψ

∂t
, (9.6)

D

Dt

(
∇2ψ

)
+ uo · ∇

(
g∗ψ

)
=

∂

∂x

(
Φ′oγ
)
.

We now eliminate ψ to give

D

Dt

[(
∇2 + g∗

) Dγ

Dt

]
=

∂

∂t

[
g∗

Dγ

Dt
− ∂

∂x

[
Φ′oγ
]]
. (9.7)

Now suppose we look for a short-wavelength solution of the form

γ = γo exp [i (ωt− k · x)] . (9.8)

Here k is real and γo is the (slowly varying) amplitude of the wave packet. Let `

be a typical geometric length scale for the base flow, say ` ∼ (g∗)−1/2. Since we are
interested in short-wavelength disturbances, we have k` � 1. Then, to leading order
in (k`)−1, (9.7) gives the local dispersion equation

ωrk = ±
[
−Φ′okxk · u

]1/2
, ωr = ω − k · u. (9.9)

Here ωr is the wave frequency measured in a frame moving with the mean flow.
Evidently, the wave is ‘locally unstable’, in the sense that it grows exponentially,
whenever Φ′okx (k · u) is positive. This is not unexpected since

Φ′okx (k · u) = −Π1k
2
x

(
k · u/kxux

)
(9.10)

where Π1 is the square of the Väisälä–Brunt frequency (as defined in (9.4)). Negative
values of Π1 correspond to an adverse (unstable) stratification of density, and to
complex values of ωr .

The equivalent results for swirling flows are

rωrk =
(
Φ′okzk · u

)1/2
(9.11)

and

Φ′okz (k · u) = r2Π4k
2
z

(
k · u/kzuz

)
. (9.12)

This time a local instability sets in whenever Π4 is negative. Again, this is not
unexpected since Π4 is Rayleigh’s discriminant, and regions of negative Π4 correspond
to an adverse stratification of angular momentum.
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In either case, ωr � k · u, so that ωr/k �| u |. The phase and group velocities of
any wave packet are therefore much less than the characteristic velocity of the base
flow. We may think of a disturbance as being carried on the back of the mean
flow, oscillating in a neutral way in regions of ‘stable’ stratification and growing
exponentially in regions of ‘unstable’ stratification. Now the fact that the wave is
‘frozen’ into the fluid has kinematic implications. In fact, it is not difficult to show
that the kinematic (eikonal) equations for such a wave require that k · u is conserved
(to leading order in (k`)−1) by the packet, so there is no substantial change in
the (streamwise) wavelength as the wave packet is swept around. This is a direct
consequence of the wave having negligible group velocity (see Lighthill 1978).

We are left, therefore, with the following picture. Suppose a small localized dis-
turbance is initiated in, say, a region of stable stratification and with k parallel to
u. Then this short-wavelength disturbance will be swept around by the base flow,
passing successively through regions of ‘stable’ and ‘unstable’ stratification. As the
disturbance is swept around it stays localized since the group velocity (the rate of
propagation of wave energy) is much less than the convective velocity. In some
regions the disturbance oscillates without loss or gain in potential energy. In the
other regions the disturbance grows, converting potential energy into kinetic energy.
Although this does not constitute a proof of instability it does seem likely that the
flow will progressively depart from its equilibrium configuration, and that the failure
to meet Arnol’d’s stability criterion is indicative of a true instability.

A model problem which captures the spirit of such an instability is

ẍ+ ω2 sin (εωt) x = 0, ε � 1.

This represents an oscillator whose natural frequency varies periodically on a slow
time scale from ω to iω. This is reminiscent of a disturbance being swept around in
one of our flows, with (εω)−1 representing the turnover time of an eddy. It is readily
confirmed (see Appendix A) that the amplitude of oscillation for x grows by e2.4/ε for
each of the (long-time-scale) cycles, and so our model problem is unstable.

10. Nonlinear stability
We turn now to the topic of nonlinear stability. In the interests of brevity we

restrict attention to planar MHD flow, although essentially the same arguments
may be applied to poloidal MHD flow. We shall demonstrate that the linear criteria
associated with (8.3) and (8.4) extend in a simple way to finite-amplitude disturbances,
although we must restrict the analysis to initial disturbances which are isovortical.
We also demonstrate that the Kelvin–Arnol’d method is readily extended to finite-
amplitude perturbations. We start, though, with the conserved-functional approach.

Recall that (6.3) is valid for finite values of ψ and φ. In effect, this follows from
our finite-amplitude conservation theorem established in §4.4. We now replace the
bracketed expressions in (6.3) by the remainder terms of the appropriate Taylor series.
This yields an integral invariant, ∆A, of arbitrary magnitude

A−Ao = ∆A =

∫ [
1
2

(∇ψ)2 +Ψ ′oφ∇2ψ + 1
2
Ψ ′′o φ

2∇2Ψo − 1
2
C ′′oφ

2 + 1
2

(∇φ)2
]

dV . (10.1)

The derivatives Ψ ′o, Ψ
′′
o and C ′′o are evaluated at certain (unknown) points in the range

Φo < Φ < Φo + φ. Next, we rearrange the terms in the integrand to give expressions
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reminiscent of (8.3) and (8.4):

∆A =
1

2

∫ [
(∇γ)2 +

[
1−

(
Ψ ′o
)2
]

(∇φ)2 + ĝφ2
]

dV , (10.2)

ĝ = Ψ ′o∇2Ψ ′o +Ψ ′′o∇2Ψo − C ′′o . (10.3)

Here Ψ ′o = Ψ ′o (Φo + φ1), Ψ
′′
o = Ψ ′′o (Φo + φ2) and C ′′o = C ′′o (Φo + φ3) where φ1, φ2

and φ3 all lie in the range 0 < φi < φ. As before, γ is defined as Ψ ′oφ− ψ, which, in
the present context, is more meaningfully written as Ψo (Φ)−Ψ . The only difference
between (10.3) and its linear counterpart lies in the location at which Ψ ′o, Ψ

′′
o and

C ′′o are evaluated. We now introduce bounds on Ψ ′o and ĝ. Let us suppose that there
exist constants g, G, d and D such that, for all possible φi in the range 0–φ,

0 < d 6
(
Ψ ′o
)2
6 D < 1, (10.4)

0 < g 6 ĝ 6 G < ∞. (10.5)

Conditions (10.4) and (10.5) are sufficient to ensure linear stability. We shall now
demonstrate that they also guarantee nonlinear stability. The first step is to use (10.4)
and (10.5) to bound ∆A from above and from below:∫ [

(∇γ)2 + (1− D) (∇φ)2 + gφ2
]

dV 6 2∆A 6

∫ [
(∇γ)2 + (1− d) (∇φ)2 + Gφ2

]
dV .

Next we must choose a measure of the size of the disturbance. It is convenient to
use the norm

‖(γ, φ)‖2=

∫ [
(∇γ)2 + (1− D) (∇φ)2 + gφ2

]
dV . (10.6)

Since ∆A is conserved we have, for all t,

‖(γ, φ)‖26

∫ [
(∇γ)2

o + (1− d) (∇φ)2
o + Gφ2

o

]
dV (10.7)

where the subscript o indicates terms evaluated at t = 0. This is the key result. It
implies that the magnitude of the disturbance, as measured by ‖(γ, φ)‖, is limited
by the initial size of the perturbation (as measured in a slightly different way). To
establish nonlinear stability in a formal way it remains to relate the integral on the
right of (10.7) to our norm at t = 0. It is readily confirmed that∫ [

(∇γ)2
o + (1− d) (∇φ)2

o + Gφ2
o

]
dV 6 k2 ‖(γ, φ)‖2

o

where k2 = G/g if (1− D)G > (1− d) g, or k2 = (1− d) / (1− D) if (1− D)G <
(1− d) g. This allows us to rewrite (10.7) in the form

‖(γ, φ)‖26 k2 ‖(γ, φ)‖2
o (10.8)

where k is a known constant. We conclude, therefore, that ‖(γ, φ)‖2 is bounded above
by (a constant times) its initial value. Moreover, the magnitude of the disturbance can
be bounded no matter how large its initial value. This establishes nonlinear stability,
not only in the classic sense of Lyapunov, but also in a stronger sense. (See McIntyre
& Shepherd (1987) for a discussion of the different definitions of non-linear stability.)
In summary, then, provided Φ′o and ĝ can be bounded in accordance with (10.4)
and (10.5), the flow is stable to disturbances of arbitrary magnitude. We have, in
effect, extended the linear stability criterion into the nonlinear regime, provided that
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the initial perturbations are isovortical. (Note, however, that while nonlinear stability
implies linear stability, the converse is not in general true, since the derivatives in
the expression for ĝ are evaluated at different points in the two cases.) Although we
have restricted the argument to cases where ĝ > 0, it is a simple matter to show that
the linear stability criterion (8.6) extends to nonlinear perturbations even when ĝ is
negative. (See Appendix B.)

Similar but distinct arguments have been used by Holm et al. (1985) and by
Vladimirov et al. (1996), although these authors arrive at slightly different conclusions.
In the case of Vladimirov et al. a different norm is employed for the linear and
nonlinear cases and consequently their nonlinear analysis leads to a stability criterion
which is not readily related back to the linear one. (Vladimirov et al. also consider
the more difficult case of non-isovortical initial perturbations.) Holm et al. also use
a norm (slightly) different to (10.6), and as a result their criterion is different from,
though very similar to, ours. However, as noted by Vladimirov et al., the method
of proof employed by Holm et al. contains a flaw, although it is probable that this
technical difficulty could be remedied by reformulating the problem.

Note that we have relied on the conserved-functional technique for establishing
nonlinear stability. However, we can obtain precisely the same results using the
variational (or energy) method. Indeed, in his original paper Arnol’d (1966b) notes
that a nonlinear criterion may be obtained for Euler flows by considering finite-
amplitude disturbances on an isovortical sheet. It turns out that the same is true
of MHD flows, as we now show. Consider the change in energy resulting from a
finite-amplitude disturbance on a generalized isovortical sheet. This is given by

∆E =

∫ [
1
2

(∇φ)2 + 1
2

(∇ψ)2 − φ∇2Φo −Ψo∇2ψ
]

dV

where φ and ψ are determined by (5.1) and (5.2) in the form

∂Φ

∂t
= −v̂ · ∇Φ, 0 < t < τ,

∂Ω

∂t
= −v̂ · ∇Ω +H · ∇ζ, 0 < t < τ.

Unlike §5, however, we now consider τ to be of finite magnitude. Combining the first
of these expressions with a first-order truncated Taylor series for Φ (t), we obtain

φ = Φ (τ)− Φo = −η · ∇
[
Φ
(
t∗
)]

; 0 < t∗ < τ.

More generally, if F (Φ) is a smooth function of Φ we have

F (Φo + φ)− F (Φo) = −η · ∇
[
F
(
Φ
(
t∗
))]

; 0 < t∗ < τ.

Consequently, if we now represent F (Φo + φ) by a second-order truncated Taylor
series, we find

F ′ (Φo)φ = −∇ ·
[
F
(
Φ
(
t∗
))
η
]
− 1

2
F ′′
(
Φ
(
t∗∗
))
φ2; 0 < t∗∗ < τ.

We now choose F = Co and this allows us, with the help of (4.8), to rewrite the third
term in the expression for ∆E, −φ∇2Φo, as

− 1
2
φ2
(
Ψ ′′o Ωo + C ′′o

)
− ∇ · [Coη] + Ωo [Ψo (Φo + φ)−Ψo (Φo)] .

We shall return to this expression shortly. In the meantime we introduce γ, defined
as before in the form

γ = Ψ ′o
(
Φ
(
t̂
))
φ− ψ = Ψo (Φ)−Ψ.
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It follows directly from this expression that

(∇ψ)2 = (∇γ)2 + φ2
[
Ψ ′o∇2Ψ ′o

]
−
(
Ψ ′o
)2

(∇φ)2 + 2ω [Ψo (Φo + φ)−Ψo (Φo)]

+∇ ·
[
2φΨ ′o∇ψ − φ2Ψ ′o∇Ψ ′o

]
.

Substituting for (∇ψ)2 and φ∇2Φo in our equation for ∆E gives

∆E =
1

2

∫ [
(∇γ)2 +

(
1−

(
Ψ ′o
)2
)

(∇φ)2 + ĝφ2
]

dV

where ĝ is defined by (10.3). As in the expression for ∆A, the exact points at
which Ψ ′o, Ψ

′′
o and C ′′o are evaluated are unknown. Note the similarity to (10.2).

Now conditions (10.4) and (10.5), which ensure nonlinear stability via the conserved-
functional argument, are equivalent to the statement that ∆E > 0 for all conceivable
isovortical perturbations, whatever their magnitude. This is exactly what we would
expect from Arnol’d’s energy (i.e. variational) argument. That is, if the equilibrium
flow represents an absolute minimum in energy on a generalized isovortical sheet then
the flow must be nonlinearly stable in an energy norm. We have, in effect, shown how
to generalize the Kelvin–Arnol’d method to nonlinear stability.

11. Conclusions
We have identified the steady solutions of (1.1)–(1.3). This represents a broad class

of forced two-dimensional flows. The stability of these motions has been investigated
using a variant of the Kelvin–Arnol’d energy principle. In line with previous inves-
tigators we find that the planar and poloidal MHD equations support a variety of
(linearly) stable steady flows. The situation is quite different when f is a prescribed
function of position. In this case the corresponding flows fail to satisfy the (gen-
eralized) Kelvin–Arnol’d energy criterion. We argue that this is indicative of a real
instability of the Rayleigh–Taylor type. We have also shown that a new test for
linear stability may be formulated in terms of the Lagrangian. Specifically, a flow is
stable if its Lagrangian is a maximum for the steady state. All of these results may
be extended to flows driven by more than one body force. In this context we have
derived a new stability criterion for natural convection in a magnetic field. Finally, we
have investigated the nonlinear stability of planar MHD flows. Our primary finding
is that a simple modification of the well-known linear-stability criterion also provides
a sufficient condition for nonlinear stability, provided the initial perturbations are
isovortical. We also show how the Kelvin–Arnol’d method may be extended to obtain
nonlinear stability criteria.

The author is indebted to H. K. Moffatt whose work on the stability of MHD
flow formed the starting point of this study, and to H. K. Moffatt, K. Bajer, V. A.
Vladimirov, and an anonymous referee for their helpful comments.

Appendix A. Model problem of §9
Consider the equation

ẍ+ ω2 sin (εωt) x = 0, ε � 1.
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This has differing solutions depending on whether the sin function is positive or
negative. That is, for −π < εωt < 0,

x = [− sin εωt]−1/4
[
Aeφ + Be−φ

]
, φ =

1

ε

∫ εωt

o

[− sin η]1/2 dη

and for 0 < εωt < π,

x = [+ sin εωt]−1/4 [a cos θ + b sin θ] , θ =
1

ε

∫ εωt

o

[sin η]1/2 dη.

These solutions are valid to leading order in ε but break down near t = 0. A different
form of solution holds in the vicinity of t = 0 and matching this to the (outer)
solution above leads to the well-known connection formulae

2
√

2A = (a+ b) ,
√

2B = a− b.
Now if we take as our initial conditions a = −b at εωt = π/2, and follow the solution
over one period, matching first at εωt = π and then at εωt = 2π, we find

x
(
5π/2

)
= x

(
π/2

)
e2θo , εθo =

∫ π/2

o

[sin η]1/2 dη = 1.20.

Evidently, the amplitude of the disturbance increases by e2.4/ε per (long-time-scale)
cycle. Of course this increase in amplitude simply represents the growth during the
‘unstable’ parts of the cycle.

Appendix B. Nonlinear stability of MHD flow
We note that a nonlinear stability criterion for class (ii) flows may also be established

for those cases where ĝ is negative. Suppose that ĝ < 0 and that there exist constants
g, G, d and D such that

0 < d 6
(
Ψ ′o
)2
6 D < 1, 0 < g 6| ĝ |6 G < ∞.

Moreover, suppose that the minimum eigenvalue, λo, of

∇2φ+ λ
[
G/ (1− D)

]
φ = 0, φ = 0 on S

is greater than unity. As noted in §8, these conditions are sufficient to ensure linear
stability. We now show that they also guarantee nonlinear stability provided the initial
perturbations are isovortical. We start by placing bounds on ∆A according to∫ [

(∇γ)2 + (1− D) (∇φ)2 − Gφ2
]

dV 6 2∆A 6

∫ [
(∇γ)2 + (1− d) (∇φ)2 − gφ2

]
dV .

Moreover, we have a second bound.∫ [
(∇φ)2 −

(
G/ (1− D)

)
φ2
]

dV >
[
(λo − 1) /λo

] ∫
(∇φ)2 dV > 0.

This enables us to replace the lower bound on ∆A to give∫ [
(∇γ)2 + α2 (∇φ)2

]
dV < 2∆A 6

∫ [
(∇γ)2 + (1− d) (∇φ)2 − gφ2

]
dV

where α2 = (1− D) (λo − 1) λ−1
o . Finally we introduce the norm,

‖(γ, φ)‖2=

∫ [
(∇γ)2 + α2 (∇φ)2

]
dV .
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Conservation of ∆A in conjunction with the expression above now provides us with
an upper bound on our norm:

‖(γ, φ)‖26

∫ [
(∇γ)2

o + (1− d) (∇φ)2
o − gφ2

o

]
dV .

Clearly, the magnitude of the disturbance, as measured by ‖(γ, φ)‖2, is limited by the
initial size of the perturbation, albeit measured in a different way.
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